REINVENTING
THE ENERGY VALUE CHAIN
SUPPLY CHAIN ROADMAPS FOR DIGITAL OILFIELDS
THROUGH HYDROGEN FUEL CELLS

DAVID STEVEN JACOBY
&
ALOK RAJ GUPTA

PENNWELL BOOKS
Contents

Figures and Tables .. xvii
Dedication ... xxi
Foreword .. xxiii
Acknowledgments .. xxvii
Acronyms and Abbreviations ... xxix

Preface .. xxxiii
Purpose, Scope, and Development of this Book xxxix
How the Book Is Organized .. xlii

Introduction ... xlvi
Cleaner, Greener, and Smarter... xlvi
The Big Shift .. xlvi
Supply Chain Types .. lxviii
Supply Chain Value Creation Strategies lxviii
Roadmaps for Maximum Value Creation and Financial Impact . lxvii
Supply Chain Cost ... lxix
Supply Chain Performance Management—Metrics and Targets . lxxi
Supply Chain Governance ... lxxiv
Supply Chain Processes ... lxxvi
First Principles for Supply Chain Design and Improvement lxviii
Supply Chain Successes ... lxxiii
Conclusion to the Introduction ... lxxvii

Methods for CapEx Project Supply Chain Risk Mitigation 1
Chapter Highlights ... 1
Introduction .. 3
General Approaches to Managing Risk 3
Value Chain—Specific Risks and Trade-offs 6
Techniques for Capital Project Management Decisions 8
Technology Choice Risk Management 11
Capital Project Risks and Mitigation 14
Build-Own-Operate Choices (BTO, BOOT, etc.) 14
Sustainability Trade-offs ... 15
Materials and Services Unavailability Risks and Mitigation Strategies . 16
<table>
<thead>
<tr>
<th>Chapter Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outsourcing Risks and Mitigation</td>
<td>19</td>
</tr>
<tr>
<td>Supplier Partnering Risks and Mitigation</td>
<td>21</td>
</tr>
<tr>
<td>Structuring Strategic Partner Relationships</td>
<td>23</td>
</tr>
<tr>
<td>Procurement Bundling Trade-offs</td>
<td>27</td>
</tr>
<tr>
<td>Contract Term Risk and Mitigation</td>
<td>29</td>
</tr>
<tr>
<td>Determining the Optimal Term of Commitment</td>
<td>29</td>
</tr>
<tr>
<td>Methods for Operations and Maintenance Management Optimization</td>
<td>33</td>
</tr>
<tr>
<td>Chapter Highlights</td>
<td>33</td>
</tr>
<tr>
<td>Introduction</td>
<td>34</td>
</tr>
<tr>
<td>Trade-offs and Management Techniques in Operations & Maintenance</td>
<td>34</td>
</tr>
<tr>
<td>Internet of Things (IoT) and Artificial Intelligence (AI) Technology</td>
<td>37</td>
</tr>
<tr>
<td>Cybersecurity Risk Management</td>
<td>38</td>
</tr>
<tr>
<td>Peak Capacity Strategies</td>
<td>39</td>
</tr>
<tr>
<td>Overall Equipment Effectiveness (OEE) and Return on Net Assets (ROA)</td>
<td>39</td>
</tr>
<tr>
<td>Total Productive Maintenance and Related Concepts</td>
<td>41</td>
</tr>
<tr>
<td>Constraints Management, Debottlenecking, and Flexible Capacity</td>
<td>42</td>
</tr>
<tr>
<td>Standardization</td>
<td>43</td>
</tr>
<tr>
<td>Achieving Continuous Cost Reduction</td>
<td>45</td>
</tr>
<tr>
<td>Stochastic Inventory Management</td>
<td>45</td>
</tr>
<tr>
<td>Vendor Managed Inventory</td>
<td>48</td>
</tr>
<tr>
<td>JIT</td>
<td>49</td>
</tr>
<tr>
<td>Transportation and Warehousing Optimization</td>
<td>51</td>
</tr>
<tr>
<td>Sourcing Trade-offs</td>
<td>52</td>
</tr>
<tr>
<td>Category Management</td>
<td>52</td>
</tr>
<tr>
<td>Category Strategies</td>
<td>52</td>
</tr>
<tr>
<td>Determining the Optimal Number of Suppliers</td>
<td>54</td>
</tr>
<tr>
<td>Prequalifying Suppliers</td>
<td>58</td>
</tr>
<tr>
<td>Managing the Tendering Process</td>
<td>64</td>
</tr>
<tr>
<td>Assuring Local Content Where Needed</td>
<td>67</td>
</tr>
<tr>
<td>Total Cost of Ownership (TCO) Trade-offs</td>
<td>70</td>
</tr>
<tr>
<td>Total Cost of Ownership</td>
<td>70</td>
</tr>
<tr>
<td>Combined Purchase and Operating/Maintenance Agreements</td>
<td>71</td>
</tr>
<tr>
<td>Health, Safety, & Environmental (HSE) Considerations</td>
<td>74</td>
</tr>
<tr>
<td>Upstream HSE Management</td>
<td>74</td>
</tr>
<tr>
<td>Downstream HSE Management</td>
<td>76</td>
</tr>
<tr>
<td>Power Industry HSE Management</td>
<td>77</td>
</tr>
<tr>
<td>Root Cause Analysis</td>
<td>78</td>
</tr>
<tr>
<td>Failure Mode Effect Analysis</td>
<td>79</td>
</tr>
<tr>
<td>Selected International Risk Management Standards</td>
<td>80</td>
</tr>
<tr>
<td>The Supply Chain’s Role in Reducing Environmental Footprint</td>
<td>85</td>
</tr>
</tbody>
</table>
Hydrogen/Fuel Cells

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter Highlights</td>
<td>89</td>
</tr>
<tr>
<td>Introduction</td>
<td>90</td>
</tr>
<tr>
<td>Trade-offs and Management Techniques in Capital Project Management</td>
<td>94</td>
</tr>
<tr>
<td>Technology Choice Risk Management: Choosing the Right Fuel Cell Chemistry</td>
<td>94</td>
</tr>
<tr>
<td>Capital Project Risks and Mitigation: Managing an Early-Stage Demonstration Project In-House</td>
<td>95</td>
</tr>
<tr>
<td>Supply Unavailability Risks and Mitigation: Ensuring an Adequate Source of Platinum</td>
<td>95</td>
</tr>
<tr>
<td>Outsourcing Risks and Mitigation: Forming an R&D Partnership for Lab Experimentation</td>
<td>96</td>
</tr>
<tr>
<td>Supplier Partnering Risks and Mitigation: Licensing Technology from a Vendor</td>
<td>96</td>
</tr>
<tr>
<td>Procurement Bundling Trade-offs: Negotiating a Package Deal Including Customized Development through O&M and Servicing</td>
<td>97</td>
</tr>
<tr>
<td>Contract Term Risk and Mitigation: Working with Short-Term Agreements Until Requirements and Technologies Stabilize</td>
<td>97</td>
</tr>
<tr>
<td>Trade-offs and Management Techniques in Operations & Maintenance</td>
<td>98</td>
</tr>
<tr>
<td>Cybersecurity Risk Management: Protecting the FCCU</td>
<td>98</td>
</tr>
<tr>
<td>Internet of Things (IoT) and Artificial Intelligence (AI) Technology Choices: Piloting AI Technology in Autonomous Vehicle Applications</td>
<td>98</td>
</tr>
<tr>
<td>Peak Capacity Strategies: Achieving Economies of Scale to Gain Effective Capacity</td>
<td>99</td>
</tr>
<tr>
<td>Sourcing Trade-offs: Avoiding Intellectual Property Disputes in Fuel Cell Supply Agreements</td>
<td>99</td>
</tr>
<tr>
<td>TCO Trade-offs: Making (or Spending) Money in Recycling and Refurbishing</td>
<td>100</td>
</tr>
<tr>
<td>Supply Chain Roadmap for Fuel Cells</td>
<td>100</td>
</tr>
</tbody>
</table>

Utility-Scale Energy Storage

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter Highlights</td>
<td>103</td>
</tr>
<tr>
<td>Introduction</td>
<td>104</td>
</tr>
<tr>
<td>Trade-offs and Management Techniques in Capital Project Management</td>
<td>109</td>
</tr>
<tr>
<td>Technology Choice Risk Management: Minimizing Thermal Risks in Batteries</td>
<td>109</td>
</tr>
<tr>
<td>Capital Project Risks and Mitigation: Insuring System Performance Reliability</td>
<td>110</td>
</tr>
<tr>
<td>Supply Unavailability Risks and Mitigation: Securing the Battery Raw Materials Supply Chain</td>
<td>110</td>
</tr>
<tr>
<td>Outsourcing Risks and Mitigation: Licensing Strategies</td>
<td>111</td>
</tr>
<tr>
<td>Supplier Partnering Risks and Mitigation: Crafting Flexible Partnerships</td>
<td>112</td>
</tr>
</tbody>
</table>
Procurement Bundling Trade-offs: Architecting a Supply Chain of Specialists ... 112
Contract Term Risk and Mitigation: Matching Contract Term to the Product Roadmap ... 112
Trade-offs and Management Techniques in Operations & Maintenance .. 113
Cybersecurity Risk Management: Reducing the Attack Surface ... 113
Internet of Things (IoT) and Artificial Intelligence (AI)
 Technology Choices: Learning from Demand Fluctuations .. 113
Peak Capacity Strategies: Optimizing Reliability with Control Systems .. 114
Sourcing Trade-offs: Ensuring Responsible Sourcing of Cobalt and Other Minerals ... 114
TCO Trade-offs: Understanding the Levelized Cost of Storage .. 115
Supply Chain Roadmap for Energy Storage ... 116

Wind .. 119
Chapter Highlights .. 119
Introduction ... 120
Trade-offs and Management Techniques in Capital Project Management .. 122
Technology Choice Risk Management: Avoiding Wrong Technology Choices in Today’s Rapidly Changing Wind Power Landscape .. 122
Capital Project Risks and Mitigation: Hedging Against Financial Risks .. 123
Supply Unavailability Risks and Mitigation: Finding Alternative Sources of Balsa Wood for Blades .. 124
Outsourcing Risks and Mitigation: Dealing with an Increasingly Experienced and Competent Market of O&M Vendors .. 124
Supplier Partnering Risks and Mitigation: Extending a Turbine Manufacturer Relationship .. 125
Procurement Bundling Trade-offs: Bundling Turbine Acquisition and Service Agreement .. 125
Contract Term Risk and Mitigation: Using Real Options to Achieve Low Cost with Flexibility .. 125
Trade-offs and Management Techniques in Operations & Maintenance .. 126
Cybersecurity Risk Management: Treating Cybersecurity as a Major Part of O&M Expense .. 126
Internet of Things (IoT) and Artificial Intelligence (AI)
 Technology Choices: Real-Time Automated Bidding Based on Market Price Patterns .. 127
Peak Capacity Strategies: Using Dedicated Production Capacity to Guarantee Delivery Dates .. 127
Sourcing Trade-offs: Building Local Value Chains in the Normal Course of Business .. 128
TCO Trade-offs: Planning for End of Life and Disposal of Turbine Blades .. 129
Supply Chain Roadmap for Wind Power .. 129
Solar

<table>
<thead>
<tr>
<th>Chapter Highlights</th>
<th>131</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>132</td>
</tr>
</tbody>
</table>

Trade-offs and Management Techniques in Capital Project Management

- Technology Choice Risk Management: PV, Storage, Distributed, CSP, and Floating | 134 |
- Capital Project Risks and Mitigation: Setting the Scope of EPCI Services | 139 |
- Supply Unavailability Risks and Mitigation: Securing Polysilicon | 139 |
- Outsourcing Risks and Mitigation: Focusing on Systems or Modules | 140 |
- Supplier Partnering Risks and Mitigation: Using Auctions and Competitive Bids | 140 |
- Procurement Bundling Trade-offs: Coordinating EPC with Project Funding | 141 |
- Contract Term Risk and Mitigation: Coping with Tariff and Regulatory Interference | 142 |

Trade-offs and Management Techniques in Operations & Maintenance

- Cybersecurity Risk Management: Assessing Firewall Adequacy | 143 |
- Internet of Things (IoT) and Artificial Intelligence (AI) Technology Choices: Using Smart Tracking | 144 |
- Capacity Strategies: Using Solar + Storage to Tame the Duck Curve | 144 |
- Sourcing Trade-offs: Identifying Alternative Sources for Competition and Supply Assurance | 146 |
- TCO Trade-offs: Avoiding, Replacing, and Disposing of PV Modules | 147 |

Biomass

<table>
<thead>
<tr>
<th>Chapter Highlights</th>
<th>151</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>152</td>
</tr>
</tbody>
</table>

Trade-offs and Management Techniques in Capital Project Management

- Technology Choice Risk Management: Assessing Multiple Process Routes including “Power to Gas” | 153 |
- Capital Project Risks and Mitigation: Choosing an EPC with Depth in the Target Process Route | 154 |
- Supply Unavailability Risks and Mitigation: Assessing Fuel Supply, Logistics, and Seasonality | 155 |
- Outsourcing Risks and Mitigation: Monitoring the Quality and Purity of Incoming Feedstock | 155 |
- Supplier Partnering Risks and Mitigation: Engineering Design and Operating Parameters | 155 |
- Procurement Bundling Trade-offs: Tapping a Leading EPC Firm to Ensure Overall System Compatibility | 155 |
Reinventing the Energy Value Chain

Contract Term Risk and Mitigation: Aligning Operating and Maintenance Agreements, PPA, and Boiler Longevity 156
Trade-offs and Management Techniques in Operations & Maintenance.......... 156
Cybersecurity Risk Management: Ensuring Reasonable Barriers to Hacking... 156
Internet of Things (IoT) and Artificial Intelligence (AI)
Technology Choices: Establishing a Data Historian to Enable Potential Data Mining for Process Efficiencies 157
Peak Capacity Strategies: Designing Inbound Logistics Capacity to Match Plant Size ... 157
Sourcing Trade-offs: Allowing for High and Potentially Growing Transportation Cost Despite Low-Cost Feedstock 157
TCO Trade-offs: Conducting Scenario Analysis to Determine the Optimal Feedstock and Process Route 158
Supply Chain Roadmap for Biomass Power .. 158

Oil & Gas—Upstream ... 161
Chapter Highlights ... 161
Introduction: Upstream Supply Chain Characteristics and Cost Drivers 162
Trade-offs and Management Techniques in Capital Project Management ... 166
Technology Choice Risk Management: Carbon Capture & Sequestration, Enhanced Oil Recovery, and More 166
Capital Project Management Structure Choices: Sharing Financial and Operational Risks in Upstream Projects 170
Sustainability Trade-offs: Reducing Upstream Emissions 172
Supply Unavailability Risks and Mitigation: Contracting & Procurement Strategies ... 175
Outsourcing Risks and Mitigation: Separating Strategic from Transactional ... 177
Partnershipping: Single, Dual, and Local Sourcing 179
Procurement Bundling: Solutioning, Should-Cost, and Tier-Skipping 182
Contract Term Risk Management: Achieving Economies of Scale through Contract Extensions ... 189
Trade-offs and Management Techniques in Operations & Maintenance Management .. 189
Internet of Things (IoT) and Artificial Intelligence (AI)
Technology Choices: Digitalizing Intelligent Oilfields 189
Cybersecurity: Bridging the IT/OT Gap 191
Peak Capacity Management Strategies: Optimizing Production, Inventory, and Asset Control ... 191
Sourcing Trade-offs: Managing Distributors and Integrators 194
TCO Trade-offs: Including Throughput in “Total Cost” 194
HSE Considerations: Using Remote Controls and Robotics for Improved Safety ... 195
Supply Chain Roadmap for Upstream Oil & Gas 195
Oil & Gas—Midstream .. 197

Chapter Highlights ... 197

Introduction—Supply Chain Economic Cost Drivers
and Design Constructs .. 197
Oil & Gas Pipelines .. 199
Oil Tankers ... 201
Liquefied Natural Gas (LNG) Infrastructure and Shipping 202
Tradeoffs and Management Techniques in Capital Project Management 203
Technology Choice Risk Management: Selecting a SCADA System 204
Capital Project Risk Mitigation: Standardizing Materials
and Modularizing Facility Design 205
Sustainability Trade-offs: Preventing & Controlling Pipeline Leaks 208
Supply Unavailability Risks and Mitigation: Planning for Pipe,
Compressors, and Other Long Lead Time Equipment 208
Outsourcing Risks and Mitigation: Focusing on the Core Midstream
Business ... 209
Supplier Partnering Risks: Maintaining Flexibility in LNG Supply Chain
Infrastructure Commitments ... 209
Procurement Bundling Tradeoffs: Contracting for Process Control
and Metering Systems ... 209
Contract Term Risk and Mitigation: Calibrating Term with Stability
and Liquidity ... 210
Tradeoffs and Management Techniques in Operations & Maintenance
Management ... 210
Internet of Things (IoT) and Artificial Intelligence (AI)
Technology Choices: Automating Batch Scheduling & Dispatch 210
Cybersecurity Risk Management: Protecting Flow Control Systems 211
Peak Capacity Strategies: Managing Interruptions & Disruptions 212
Sourcing Tradeoffs: Owning versus Leasing Vessels 212
TCO Tradeoffs: Getting More Performance from Compression Systems 213
HSE Considerations: Conforming to Regulatory Standards and Laws 213
Supply Chain Roadmap for Midstream Oil & Gas 213

Oil & Gas—Downstream .. 217

Chapter Highlights ... 217

Introduction—Supply Chain Economic Cost Drivers 217
Trade-offs and Management Techniques in Capital Project Management 220
Technology Choice Risk Management: Digitalizing Process
Control Systems .. 220
Capital Project Management Risk Mitigation: Contracting
and Managing Construction Schedules 221
Sustainability Trade-offs: Moving Toward Desulfurization
and Ethanol Blends .. 222
Supply Unavailability Risks and Mitigation: Managing Shutdowns and Restarts Through the Extended Supply Chain 222
Outsourcing Risks and Mitigation: Hiring Safety and Process Auditors 223
Supplier Partnering Risks and Mitigation: Negotiating with Retail Channel Partners 223
Procurement Bundling Trade-offs: Consolidating Procurement Volumes . . 223
Contract Term Risk and Mitigation: Contracting for Oversized Cargo Shipments ... 224
Trade-offs and Management Techniques in Operations & Maintenance
Management ... 224
Internet of Things (IoT) and Artificial Intelligence (AI) Technology Choices:
Optimizing Production and Predictive Maintenance Processes 224
Cybersecurity Risk Management: Assessing Vulnerability Throughout the Plant .. 225
Capacity Strategies: Single- and Multi-Echelon Production Planning 226
Sourcing Trade-offs: Procuring Site Security Systems & Solutions 228
TCO Trade-offs: Moving to Predictive Maintenance for Rotating Equipment ... 228
HSE Considerations: Ensuring Supply Chain Safety During Shutdowns and Restarts ... 229
Supply Chain Roadmap for Downstream Oil & Gas 229

Geothermal ... 231
Chapter Highlights ... 231
Introduction .. 231
Trade-offs and Management Techniques in Capital Project Management ... 233
Technology Choice Risk Management: Deciding on Binary, Flash, or Both ... 233
Capital Project Risks and Mitigation: Lowering Financial Exposure Through Feed-In Tariffs and PPAs 234
Supply Unavailability Risks and Mitigation: Avoiding Steel Supply Bottlenecks ... 234
Outsourcing Risks and Mitigation: Avoiding Drilling Contractor Delays ... 235
Supplier Partnering Risks and Mitigation: Realizing Synergies Across Geothermal and Other Power Projects 235
Procurement Bundling Trade-offs: Leveraging EPC Expertise from OEMs ... 235
Contract Term Risk and Mitigation: Planning for Generations 236
Trade-offs and Management Techniques in Operations & Maintenance... 236
Cybersecurity Risk Management: Ensuring Security of Automation Controllers ... 236
Internet of Things (IoT) and Artificial Intelligence (AI) Technology Choices: Predicting Maintenance Requirements to Reduce Repairs ... 237
Peak Capacity Strategies: Adding Energy Storage and District Heating to Geothermal Power Generation 238
Contents

Sourcing Trade-offs: Building Local Skills Alongside Geothermal Power Capacity ... 238
TCO Trade-offs: Reducing Lifetime Cost in the Capital Construction Phase ... 239
Supply Chain Roadmap for Geothermal Power 239

Gas- and Coal-Fired Power ... 241
Chapter Highlights .. 241
Introduction—Supply Chain Cost Drivers and Design Constructs 242
Trade-offs and Management Techniques in Capital Project Management ... 245
Technology Choice Risk Management: Determining the Optimal Power Portfolio with Simulation Tools 245
Capital Project Risks and Mitigation: Using Bid Bonds, Performance Bonds, and Payment Bonds in Construction Contracts 246
Sustainability Trade-offs: Evaluating Fuel-Switching, Co-Firing, and Hybrid Fuels ... 247
Supply Unavailability Risks and Mitigation: Estimating Delivery Time of Turbines and Generators 248
Outsourcing Risks and Mitigation: Qualifying Suppliers for Major and Minor Component Contracts 248
Supplier Partnering Risks and Mitigation: Communicating with Leading Equipment Suppliers as Partners 248
Procurement Bundling Trade-offs: Deciding When to Use an EPCM Contractor .. 249
Contract Term Risk and Mitigation: Extending the Length of Long-Term Contracts .. 249
Trade-offs and Management Techniques in Operations & Maintenance ... 250
Cybersecurity Risk Management: Adhering to and Benefiting from Power Industry Cybersecurity Standards 250
Internet of Things (IoT) and Artificial Intelligence (AI) Technology Choices: Reliability Engineering and Predictive Maintenance 250
Peak Capacity Strategies: Variable and Digital Power Generation Scheduling and Inventory Planning .. 252
Sourcing Trade-offs: Integrating Purchase and Operating Agreements ... 254
TCO Trade-offs: Standardizing Equipment 254
HSE Considerations: Taking Advantage of External Resources and Specialists .. 255
Supply Chain Roadmap for Gas- and Coal-Fired Power 255

Hydropower .. 259
Chapter Highlights .. 259
Introduction ... 260
Trade-offs and Management Techniques in Capital Project Management ... 262
Technology Choice Risk Management: Engineering Hydropower for Declining Water Availability .. 262
Capital Project Risks and Mitigation: Mitigating Ecological Risks and Impacts ... 263
Supply Unavailability Risks and Mitigation: Waiting for the Dam Cement .. 264
Outsourcing Risks and Mitigation: Securing Performance Guarantees from O&M Subcontractors ... 264
Supplier Partnering Risks and Mitigation: Working with International EPC Firms .. 265
Procurement Bundling Trade-offs: Assembling a Consortium of OEMs, Engineering Firms, and Local Construction Capability 265
Contract Term Risk and Mitigation: Using Contract Renewal Options .. 266
Trade-offs and Management Techniques in Operations & Maintenance .. 267
Cybersecurity Risk Management: Using Unidirectional Gateways .. 267
Internet of Things (IoT) and Artificial Intelligence (AI) Technology Choices: Using Sensors to Detect Turbine Noise 267
Peak Capacity Strategies: Storing Energy with Pumped Hydropower .. 268
Sourcing Trade-offs: Hiring Local Equipment and Services .. 268
TCO Trade-offs: Refurbishing Turbines and Generators .. 269
Supply Chain Roadmap for Hydropower .. 269

Nuclear .. 271
Chapter Highlights .. 271
Introduction .. 272
Trade-offs and Management Techniques in Capital Project Management .. 274
Technology Choice Risk Management: Designing Uniquely Different Value Chains for Small, Large, or Floating Plants 274
Capital Project Risks and Mitigation: Managing the “Capital Project Supply Chain” ... 275
Sustainability Trade-offs: Transporting Small Amounts of Potent Fuel in Accordance with Defined Protocols 276
Supply Unavailability Risks and Mitigation: Planning Access to Processed Uranium ... 277
Outsourcing Risks and Mitigation: Containing Risk by Minimizing Outsourcing ... 277
Supplier Partnering Risks and Mitigation: Forming Strong Alliances with Experienced Nuclear Plant Engineering and Construction Firms ... 278
Procurement Bundling Trade-offs: Bundling O&M Services to Minimize Interfaces and Handoffs ... 278
Contract Term Risk and Mitigation: Contracting for Fuel in Increments of Five Years ... 278
Figures and Tables

Figure 1. Evolution of Growth in Oil, Gas, and Power Markets xxxiv
Figure 2. Annual Capital Expenditure by Energy Technology xxxvii
Figure 3. Illustrative Capital Project Sizes for Various Energy Technologies . xxxviii
Figure 4. Value Chain versus Supply Chain xli
Figure 5. Supply Chain Types ... xlix
Figure 6. Correlation between Supply Chain Type and Supply Chain Strategy li
Figure 7. Conventional Energy Supply Chain Strategy Profile liii
Figure 8. Renewable Energy Supply Chain Strategy Profile liv
Figure 9. Supply Chain Value Frontiers for Coal and Gas-Fired versus Solar Power .. lvi
Figure 10. Prevalent Supply Chain Strategy Positioning of Energy Companies . lix
Figure 11. Supply Chain Intensity of Energy Technologies lx
Figure 12. Supply Chain Rationalization Levers Based on “Should-Cost” lxii
Figure 13. Quantification of Value Chain Strategy Benefits lxiii
Figure 14. Quantification of Supply Chain Risks lxiv
Figure 15. Illustrative Organization of Oil & Gas Company Operations Management Activities .. lxv
Figure 16. Managed Spend per Supply Management Employee lxvi
Figure 17. Typical Multi-Industry Supply Chain Management Processes lxvii
Figure 18. System Dynamics Model of a Four-Tiered Upstream Oil & Gas Supply Chain .. lxviii
Figure 19. A Typical Oil & Gas Production Project Framework Divided into Stages & Gates ... lxix
Figure 20. Typical Project Time Frame for an LNG Export Facility lxx
Figure 21. General Strategies for Managing Risk 3
Figure 22. Boston Strategies International’s Framework for Supply Chain Market Intelligence ... 6
Figure 23. Trade-offs and Management Techniques in Capital Project Management ... 9
Figure 24. Illustrative Reduction in Cost per Unit over Time 12
Figure 25. Repair and Maintenance Costs as a Function of New Model Introduction Year ... 12
Figure 26. Illustrative Economic Impact of Technology Factors over Time 13
Figure 27. Typical Assignment of Risks Assumed by EPC Contractors Under Five Types of Agreement .. 15
Figure 28. Fluctuation of Metals Prices During the Commodity Supercycle 18
Figure 29. Outsourcing Decision Process ... 21
Figure 30. US Manufacturing Prices—The Long View ... 22
Figure 31. The Value Creation Triangle ... 23
Figure 32. The Partnership Ladder .. 24
Figure 33. Partnership Maturity Model .. 25
Figure 34. Trade-offs and Management Techniques in Operations & Maintenance Management .. 35
Figure 35. Traditional “Push” vs. Just-in-Time Paradigms .. 50
Figure 36. Correlation between Industry Concentration and Price Inflation for 58 Oil & Gas Supply Markets .. 55
Figure 37. How to Decide Whether to Single or Dual Source 57
Figure 38. Simplified Representation of a Supplier Qualification Process 59
Figure 39. Range of Lead Times from Different Suppliers for the Same Product at the Same Time .. 60
Figure 40. Evolution and Status of Local Content Regulations in Six Countries 68
Figure 41. Supply Chain Risks for 15 Countries ... 69
Figure 42. Life cycle Cost Components ... 72
Figure 43. Root Cause Analysis Applied to Supply Chain Risk 79
Figure 44. Summary of Risk Management Tools ... 82
Figure 45. Utility-Scale Hydrogen Fuel Cell Power Generation Value Chain (Hypothetical) ... 92
Figure 46. Emerging Supply Chain Opportunities for Fuel Cells 102
Figure 47. Energy Storage Applications ... 105
Figure 48. Selected Utility-Scale Energy Storage Technologies by Power Rating and Discharge Time ... 106
Figure 49. Lithium-Ion Battery Energy Storage Value Chain (Illustrative) 108
Figure 50. Emerging Supply Chain Opportunities for Energy Storage 117
Figure 51. Global Investment in Wind and Solar Power .. 121
Figure 52. Wind Power Value Chain (Illustrative) ... 121
Figure 53. Emerging Supply Chain Opportunities for Wind Power 130
Figure 54. Utility-Scale Solar Photovoltaic Power Plant Value Chain (Illustrative) 133
Figure 55. The Duck Curve ... 145
Figure 56. Emerging Supply Chain Opportunities for Solar Power 150
Figure 57. Value Chain for Biomass Power Generation (Illustrative) 153
Figure 58. Emerging Supply Chain Opportunities in Biomass Power Generation .. 159
Figure 59. Oil & Gas Value Chain ... 163
Figure 60. Upstream Oil & Gas Value Chain (Illustrative) 164
Figure 61. Decision Flowchart for Taking Options on Land 169
Figure 62. Jackup and Deepwater Floater Rig Economies of Scale 185
Figure 63. “Should-Cost” Waterfall Chart 188
Figure 64. Emerging Supply Chain Opportunities in Upstream Oil & Gas . 196
Figure 65. Midstream Oil & Gas Value Chain from an Offshore Production Platform (Illustrative) .. 198
Figure 66. Eurasian Gas Pipeline Network 200
Figure 67. World Tanker Fleet by Class 201
Figure 68. Analysis of Strategic Investment in an FGSO Hub Using Real Options ... 205
Figure 69. Results of Real Options Analysis on an FGSO Hub 206
Figure 70. Emerging Supply Chain Opportunities for Midstream Oil & Gas . 215
Figure 71. Downstream Petroleum Value Chain (Illustrative) 219
Figure 72. Emerging Supply Chain Opportunities in Downstream Oil & Gas 230
Figure 73. Geothermal Power Value Chain (Illustrative) 233
Figure 74. Emerging Supply Chain Opportunities for Geothermal Power 240
Figure 75. Gas- and Coal-Fired Power Value Chain 243
Figure 76. Complex Interrelationships Between Power Capital Project Decisions ... 244
Figure 77. Pareto Chart of Causes of Boiler Failure 251
Figure 78. Emerging Supply Chain Opportunities for Gas- and Coal-Fired Power ... 257
Figure 79. Hydropower Value Chain (Illustrative) 260
Figure 80. Emerging Supply Chain Opportunities in Hydropower 270
Figure 81. Nuclear Power Value Chain (Illustrative) 274
Figure 82. Emerging Supply Chain Opportunities for Nuclear Power 283
Figure 83. Evidence of Bullwhip Effect in the Oil & Gas Equipment Industry . 293
Figure 84. Demand Volatility of Motor, Generator, and Turbine Sales 294
Figure 85. Supply Chain Simulation Architecture 295
Figure 86. Oil Price in the Volatile Oil Price Scenario 295
Figure 87. Cumulative Cost of Supply in the Volatile Oil Price Scenario 297
use a large vehicle fleet to move it around. Therefore, infrastructure projects that allow them to reduce inventory, transportation costs, or fleet assets will have a big impact. Discrete manufacturers are the most common type of manufacturer.

4. Design-to-Order Manufacturing. Design-to-order manufacturers do not ship product until it has been ordered, and usually ship directly to customers. They are usually engineering intensive and hold low inventory.

5. Distribution. Distributors buy finished product, usually add value to it, and resell it. Their profit depends on their ability to move product quickly and reliably. Unique transportation or logistics capabilities allow them to create supply chain advantages.

6. Reselling. Resellers, for example retailers and e-retailers, buy finished product and resell it in its identical state. They spend relatively large amounts on transportation, largely because their retail outlets and/or their customers are widely dispersed. Their success usually depends on excellent inventory management and close collaboration with the end customer.

Figure 5. Supply Chain Types

Supply Chain Performance Management—
Metrics and Targets

Executive management at most companies expects the supply chain management function to reduce cost and increase net margin and return on assets, and to improve operations, especially to increase quality and availability of raw materials, intermediate services, and finished product. However, the same tools can in many cases be used to optimize around other objectives (for example, environment or local content).

Rationalization efforts have been demonstrated to create at least a 13% improvement in net margin. II Synchronization efforts have been shown to create a 10% improvement on Return on Net Assets (RONA). Supply chain initiatives in the synchronization phase often achieve the improvement in RONA by reducing forecast error, and thus achieving level production both within the enterprise and across trading partners, which decreases the need for inventory and fixed assets.

Most often, improvements are measured at the project level, where they are sought in targeted areas that contribute to a higher net margin and a higher return on assets such as:

- Reduced upfront purchase cost. Lower upfront cost is the most intuitive savings framework. However, it can be complicated by tiered pricing, promotions, discounts, and volume rebates.
- Reduced operating cost. Energy savings is a common way to reduce operating costs. Operating assumption variables can affect the savings, especially for large turbines and electrical distribution and control equipment.
- Increased throughput, or productivity. Improvements that increase the speed of a process such as drilling or refinery expansions can lead to higher production overall. Savings for these types of improvements can be calculated on the basis of either cost savings or profit enhancement. Cost savings might be estimated by, say, the reduction in the number of rig-days needed to drill a well. The savings per well then can be multiplied by the number of rigs in operation and the number of wells that need to be drilled over a period of time. If the increased productivity leads to reduced time to first production, the benefit may be improved profitability. To quantify this benefit, take the number of extra days of production and calculated additional profit based on a typical well, then apply an average output price per unit to get the profit margin, and multiply the resulting benefit by the number of units producing.
- Shorter lead times for the delivery of equipment or services. For capital items, one might determine that order lead times are constraining production that would otherwise be occurring. In this case, the decrease

II Based on a prototypical operation
Introduction

Large capital projects are characterized by risk-reward trade-offs such as market (price and volume) risk, materials supply risk, supplier risk, construction risk (sometimes offloaded to an EPC firm), and operational, supplier, technology, political, and regulatory risk.43

Capital project managers can seek market risk analysis from a number of specialist consulting firms; political and regulatory risk are special types that extend well beyond supply chain management. These are not covered here.

General Approaches to Managing Risk

Supply chain policies, processes, systems, and organizational structures can be used to avoid, diversify, minimize, or hedge risk (see Figure 21). While the bulk of this chapter will provide tools and techniques for managing each of the eight trade-offs cited above, a general framework for managing risk can guide and inform some of the more detailed tools and techniques.

Avoid risk
1. Reduce consumption
2. Pass costs on to customers

Diversify risk
1. Decentralize purchasing
2. Join a buying consortium

Hedge risk
1. Buy options
2. Study and anticipate market conditions

Minimize risk
1. Buy in advance at the current price
2. Sign long-term contracts at forecast rates

The easiest and in many cases the most effective risk management strategy is to avoid risk entirely by passing it through to customers.
Fence, during which manufacturing assets can be redeployed. If planners wait until the Manufacturing Time Fence (line scheduling), there is a much greater chance of material or component unavailability or high prices. Stretching from a shorter to a longer time horizon allows more flexibility to pursue alternative strategies if there are any available.

Acquire the source. If material shortage appears to be chronic, it may make sense to acquire the source. Vertical integration makes sense when the cost of acquiring the materials through external sources exceeds the cost of procuring them internally. Even if they could be procured at lower unit prices on the outside, the cost of searching for sources of supply and negotiating prices, and arranging logistics, transportation, and payment may be complicated in a tight market, and if sustained for long periods might justify vertical integration.

Refurbish, recycle, or renew. Over the last five years refurbishment has become a fairly popular alternative to buying new for a variety of equipment. Refurbished equipment is often less expensive and can have a shorter lead time, especially if the supplier builds refurbished equipment to stock. Recycling component materials has also become more prevalent, as evidenced by the introduction of new recovery processes for rare earth metals on the part of refinery catalyst manufacturers. For example, Grace Davison installed metal traps on its catalyst production lines, which recover about 2% of the total rare earth metal volume used to make the catalysts. Using a larger analogy, enhanced oil recovery (EOR) is a large-scale analogy to the refurbishment concept: depletion has reached the point where recovery processes are widespread.

Outsourcing Risks and Mitigation

The decision about whether to insource or outsource an activity ("make vs. buy," as it is commonly called) drives cost in the same way as the ownership control decision discussed immediately above.

In addition, deciding to rent vs. buy can similarly change the risk/return profile of a work process by outsourcing part or all of it. Outsourcing affects not only risk profile, but also cost, effectiveness, and sustainability. Potential reasons for outsourcing may include:

- Lower cost and capital requirements. For instance, one production chemical supplier does not make any chemicals. It buys the base chemicals, mixes them, and resells them to the oil producer or service company. This allows the supplier to avoid tying up capital in facilities and gives it the flexibility to choose the best supplier for a given type of chemical without developing the chemistry itself.
8. Require vendors to use strong authentication and cryptographic methods
9. Require vendors to manage credentials stringently, including periodic deprovisioning
10. Require vendors to deny communications with risky profiles and log denied access incidents
11. Use intelligence about active and potential threat sources to mitigate active threats
12. Require vendors to establish a documented patch process with safeguards against malicious actors
13. Verify patch authenticity via cryptography, hashes, certificates, or two-factor authentication

For further information on cybersecurity measures, readers may refer to the guidelines prepared by the Critical Infrastructure Protection Committee of the North American Electric Reliability Council, including provenance guidelines prepared by a working committee chaired by David Steven Jacoby.76

Peak Capacity Strategies

Overall Equipment Effectiveness (OEE) and Return on Net Assets (ROA)

The Overall Equipment Effectiveness (OEE) framework measures asset effectiveness by defining three types of capacity:

- Rated capacity (as determined by the original equipment manufacturer)
- Standard capacity (driven by equipment availability, which is based on scheduled uptime vs. total available time). Most often, this corresponds to the operator’s normative, or expected output.
- Demonstrated capacity (actual production vs. the standard), which is affected by product quality or yield (good output vs. total output)

Actual capacity is equal to rated capacity times standard uptime times efficiency, or put another way, Time Available x Utilization x Efficiency, where

\[
\text{Utilization} = \frac{\text{Actual hours worked}}{\text{Standard hours available}} \quad \text{and} \quad \text{Efficiency} = \frac{\text{Standard hours produced}}{\text{Actual hours worked}}
\]

The best performers have an OEE averaging 90%, whereas laggards have an OEE averaging 74%, according to a study by Aberdeen Group. The differences are due to:

- 2% unscheduled asset downtime vs. 12% unscheduled asset downtime
- 12% reduction in maintenance cost vs. 2% increase in maintenance cost
- 24% improvement in ROA vs. plan, compared to a 5% decrease in ROA vs. plan77