Oil and Gas Production in Nontechnical Language
CONTENTS

Foreword ... xi
Preface ... xiii
List of Illustrations ... xvii

1. How Did We Get Here? The History of Production 1
 A Case for Casing .. 4
 More Fireworks .. 7
 Underground Mysteries ... 9
 Water, Water Everywhere 11
 Breathings of the Earth 13
 Crisis and Reservoir Engineering 14
 Notable Failure and Success 19
 Horizontal Drilling ... 19
 The Great Offshore ... 20
 Renaissance ... 25

2. The Container: The Reservoir 27
 Origin .. 28
 Down to earth ... 29
 Pangaea and the shifting plates 31
 Transformation ... 36
 Shifting sands ... 37
 Characterization .. 38
 Rock of (various) ages ... 40
 Going with the flow ... 41
 Lithification ... 43
 Spaces ... 46
 Connecting the spaces 48
 Distortion ... 50
 Discovery ... 55
 Finding the trap ... 55
 Enter seismic ... 58
 And On ... 65

3. What’s in The Container? The Prize 67
 Determinants ... 68
 Pressure .. 68
 Temperature ... 68
 Time ... 69
The Contents ... 70
Saltwater ... 70
Hydrocarbons: Oil and gas 70

The Chemistry .. 71
Composition ... 74
Properties .. 77
Impurities ... 79
Fingerprints ... 79

The Origin of Hydrocarbons 80
Biogenic ... 80
Abiogenic .. 81

Unconventional Oil and Gas 83
Oil sands ... 83
Coal-bed methane 87

And On .. 89

4. Yours, Mine, or Theirs? Ownership 91
Ownership in the United States 91
Royalties .. 92
The Negotiation 93
Damages ... 94
Non-US Rights 97
Bidding Process 98
Spacing Units and Pooling 99
Unitization ... 102
Nonparticipation 103
Nonconsent .. 104
Rewards ... 104
Perpetuation and Termination 105
Expertise ... 105
And On ... 106

5. Getting There: Drilling 107
The Spring Pole 108
Cable Tool Drilling 109
Cable Tool Operations 112
Rotary Drilling 114
 Rotary rig components 117
The Top Drive 123
Drill Bits .. 125
Penetration ... 127
Changing the bit .. 128

Drilling Mud .. 129
 The purpose of mud 130
 The circulating system 132

Setting Casing ... 135
 Cementing .. 136

Blowout Preventers ... 138

Other Features .. 140

Drilling Offshore .. 142
 Platforms for drilling 142
 At the seafloor .. 144
 Compensators .. 145
 Fixed platforms 146

Automation ... 146

The Course .. 147
 Mud motors ... 149

Location, Location, Location 152

And On .. 154

6. What Have We Found? Logging and Testing 155
 Logging .. 156
 Mud logs ... 156
 Openhole logs 161
 Induction logs 166
 Saturation .. 167
 Porosity .. 168
 Coring ... 168
 Alternatives to coring 172
 Correlation Logs ... 172
 Spontaneous potential 172
 Gamma ray .. 173
 Cased-Hole Logging and Measuring Devices 174
 Real Time .. 175
 Directional and Horizontal Wells 176
 Original Hydrocarbons in Place 177
 Openhole Testing ... 179
 Drillstem testing 179
 Wireline drillstem tests 183
 And On ... 185
7. Getting It Ready—Completions .. 187
 Casing the Hole .. 187
 Solid or slotted casing ... 189
 Cementing ... 190
 Trees ... 192
 Accessing the Formation .. 195
 Gravel packing .. 198
 Smart Wells and Intelligent Completions 198
 Hydraulic Fracturing .. 201
 Precedent ... 202
 Fracturing ... 203
 And On ... 211

 Phases ... 213
 Phase Diagrams .. 214
 Reservoir Fluid Categories ... 216
 Using Phase Diagrams .. 217
 Black oil .. 218
 Volatile oil ... 219
 Retrograde gas .. 219
 Wet gas .. 221
 Dry gas .. 221
 Gas Wells versus Oil Wells .. 222
 Shrinkage ... 222
 Solution Gas-to-Oil Ratio .. 223
 Relative Permeability .. 223

9. Here It Comes: Production .. 227
 The Motivating Force ... 227
 Drive Mechanisms .. 230
 Producing Phases ... 231
 Primary Production .. 232
 Secondary recovery .. 243
 Tertiary Recovery ... 249
 Fire floods ... 250
 Steam floods ... 250
 Enhanced Recovery ... 253
 CO₂ injection ... 253
 And On ... to the Surface ... 255
10. Making It Marketable: Field Processing 257
 Some of the Parts ... 257
 Gas Treating .. 261
 Acid gas .. 261
 Water ... 262
 Oil Treating .. 265
 Heater treater .. 266
 Free-water knockout vessel 267
 Electrostatic heater treater 268
 Demulsifying agents 269
 Water Disposal .. 269
 Natural Gas Processing Plants 271
 Testing ... 272
 Measurement and Metering 273
 Gas metering .. 273
 Oil metering ... 275
 Storage .. 277
 Subsea Processing ... 279
 And On ... 282

11. Fixing Things: Remedial Operations and Workovers 283
 Decision Making .. 284
 Workover Rigs ... 286
 Coiled Tubing .. 288
 Subsea Completions 291
 Well Problems ... 291
 Mechanical failures 291
 Water production 291
 Coning .. 293
 Plugging .. 294
 Well Stimulation .. 296
 Acidizing ... 296
 Fracturing ... 296
 Changing Production Intervals 299
 Abandonment ... 301
 And On ... 302

12. Who’s Involved: The Players 303
 Size ... 303
 Composition ... 305
The People .. 306
 Geologists ... 306
 Geophysicists .. 307
 Engineers .. 308
 Operations staff 310
The Suppliers .. 313
 In-house and outsourced 315
And On .. 316
13. What Should We Do: Strategy 317
 Identity .. 318
 A Strategy Model 319
 Assessing competencies 322
 Strategy implementation 324
 Digitizing the Oil Field 324
 The digital oil field 325
 Structure ... 326
 How Do E&P Companies Compete? 328
 The prize ... 329
Index ... 331
I often have thought that what oil and gas companies actually do to discover and produce hydrocarbons must be a mystery to many people outside the E&P community, and so they cannot fully appreciate the large sums of capital put at risk. They may not even realize that it is in production operations that all the upstream efforts of those companies turn into revenue, into money.

Still, that simple view fails to account for the value generated by almost countless numbers of people that provide the services, materials, and capital vital to successful E&P ventures. As authors Bill Leffler and Martin Raymond point out in this book, more than 80 percent of the money that oil and gas companies spend goes not to their own engineers, scientists, and operating staff, but to service companies and suppliers. And that doesn’t even count the support services within the oil and gas companies.

I don’t doubt that in those specialized companies and support groups there are many, many people who want to and ought to know more about the processes of producing oil and gas. And I am also convinced that if they did, both they and the companies they support would achieve continuously increasing levels of efficiency and effectiveness.

This book by Leffler and Raymond is a broad leap across the gap between the mysteries of production operations and the need for better understanding by those who help make it happen. This book won’t tell engineers and operating people how to do their jobs, but it will make clear to people who have to deal with them what those engineers and operating people are trying to achieve—and why.

Martin Raymond’s long career in production and Bill Leffler’s broad oil and gas background and credentials as a writer make them the right team to create this essential book.

John F. Bookout
President and CEO (retired),
Shell Oil Company
Preface

Beginning is easy. Continuing is hard.

—Japanese proverb

Who?

To petroleum engineers and geologists, the basics of oil and gas production are virtually second nature. That’s what they do. But what about the rest of the world—the mud salesman, the information technology specialist, the environmentalist, the accountant, the facilities engineer, the seismic crew member, the . . . well, you get it. All these people have to deal with petroleum engineers and geologists, providing them with goods and services. How do they get a grip on the challenges of extracting oil and gas from the ground? How do they relate announcements about new technologies and innovations to what their clients are currently doing? And how does another group, those abruptly thrust into the industry—a landowner, a royalty-interest owner, or an incredibly lucky heir—catch up?

We wrote this book with all those people in mind. Some are engineering graduates. Many have only a vaguely related technical education. Others don’t even have that arrow in their quivers. So this book attempts to reduce the technology to understandable prose. Oh, there are one or two sections that have formulas, but that’s all. There may be complicated charts and diagrams, but each one has an easy explanation—even though we acknowledge that production is a complicated business.

However, nothing stays the same and that’s why our publisher, PennWell, felt that the first edition of this best-selling book needed an update. In the decade and a half since we produced the first edition, the technology of the oil and gas industry has made remarkable, at times unbelievably innovative, strides. The improvements to equipment and operations and the changes from what couldn’t be done to the routine and from wish lists to actual
operations have all been motivated by the necessity to reduce time and cost. The monumental cost of deepwater operations and exploiting unconventional oil and gas accumulations had to be reduced. And it has been! But with progress has come the collateral effect of a nearly incomprehensible expansion of the language describing these innovations. We have been tasked with the responsibility of being true to the “in Nontechnical Language” part of our title. That has been difficult and where we have missed the mark, excuse us, please. Our mission is still to educate all those whose lives are touched by the E&P portion of our remarkable industry.

Why?

The gap in time between this second edition and the first has seen dramatic changes in bringing hydrocarbons to the surface from their resting place in the earth. Most notably are the technologies associated with the exploitation of shale oil and gas. While not with as much notoriety, advances in geologic understanding, seismic methods, operating in harsh environments such as deepwater, logging and completions, and even mineral rights negotiations have sped forward. We have brought all those subjects up to date.

What?

The meat of this book is in the second two-thirds. But at any proper meal, an appetizer, soup, and salad should come first. That’s why the first third has the “upstream part” of the upstream—some geology and geophysics, some legal stuff, and drilling. All the petroleum engineers and the geologists had to learn it before they could function. Without it, the business of production would remain a mystery to them also.

Most of the last two-thirds of this book deal with the theory and operations that take place at the lease:

- Describing what’s in the subsurface,
- How it reacts when tapped by a well, and
- How to make the commodity saleable.
Toward the end, two short chapters deal with the people running the show and how they decide what part of the business would make them the most money.

Where?

The scale and scope of oil and gas production cover both the world’s largest field, Ghawar in Saudi Arabia, which produces over five million barrels a day, as well as a one-stripper-well field in West Texas averaging two barrels a day. Most of the world’s oil fields are more like the one in West Texas than the one in Saudi Arabia. Look at the distribution of oil reserves by field size in figure P–1. Nearly 90 percent of the oil to be produced from fields already discovered will come from only 10 percent of all fields. But still, the other 90 percent of the fields represent ongoing and nearly endless business activities and opportunities for potential readers of this book.

![Diagram](https://example.com/diagram.png)

Fig. P–1. Ultimate oil recovered in the world by field size. Only a few hundred fields account for most of the oil that will ever be produced. A seemingly endless number of small fields make up the remaining share.
How?

While we labored over the prose and illustrations of this book, our wives, Eileen and Pat, patiently (almost always) let each of us huddle for long, uncommunicative hours. Without such tolerance, a less satisfying product would have emerged. Our thanks go to them. Ask any well-married author and you’ll get the same story.

Besides that great boon, we had valuable help from a number of experts, Laura Raymond, Sam Peppiatt, Frank Wolfe, Bob Henley, Bob Glenn, George Dotson, Becky Hardin, Paul Burdick, Sally Tristan, and Mike Stone, to name the ones we leaned on most. Pat Raymond and Judy Curran provided additional insights from a less technical perspective. Always we interpreted what everyone said, so we have to take sole responsibility for what you see and read here.

M. S. R. and W. L. L.

Illustrations

Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>P–1</td>
<td>Ultimate oil recovered in the world by field size</td>
<td>xv</td>
</tr>
<tr>
<td>1–1</td>
<td>Oil sump at Spindletop, circa 1902</td>
<td>3</td>
</tr>
<tr>
<td>1–2</td>
<td>Burning tank at Spindletop, circa 1902</td>
<td>4</td>
</tr>
<tr>
<td>1–3</td>
<td>Early drillers, circa 1910</td>
<td>6</td>
</tr>
<tr>
<td>1–4</td>
<td>Drillers lowering a torpedo into a well in 1922</td>
<td>8</td>
</tr>
<tr>
<td>1–5</td>
<td>An early design of a Lufkin pump jack</td>
<td>13</td>
</tr>
<tr>
<td>1–6</td>
<td>Natural gas flaring in the United States</td>
<td>15</td>
</tr>
<tr>
<td>1–7</td>
<td>The first rotary drilling job</td>
<td>16</td>
</tr>
<tr>
<td>1–8</td>
<td>Designing a blowout preventer</td>
<td>16</td>
</tr>
<tr>
<td>1–9</td>
<td>Spindletop, a year later, 1902</td>
<td>18</td>
</tr>
<tr>
<td>1–10</td>
<td>Piers and derricks at Summerland, California Oil, 1901</td>
<td>21</td>
</tr>
<tr>
<td>1–11</td>
<td>Marlem and Bullwinkle</td>
<td>22</td>
</tr>
<tr>
<td>1–12</td>
<td>Layout of the Pavlor (offshore Brazil) subsea development with “wet” trees and subsea processing</td>
<td>23</td>
</tr>
<tr>
<td>1–13</td>
<td>Remote operated vehicle servicing a deepwater wellhead</td>
<td>24</td>
</tr>
<tr>
<td>1–14</td>
<td>Fracking equipment</td>
<td>25</td>
</tr>
<tr>
<td>2–1</td>
<td>Partial section of Earth</td>
<td>31</td>
</tr>
<tr>
<td>2–2</td>
<td>Reshaping the Earth’s continents</td>
<td>32</td>
</tr>
<tr>
<td>2–3</td>
<td>The world’s tectonic plates</td>
<td>33</td>
</tr>
<tr>
<td>2–4</td>
<td>Seafloor spreading</td>
<td>34</td>
</tr>
<tr>
<td>2–5</td>
<td>Subduction</td>
<td>35</td>
</tr>
<tr>
<td>2–6</td>
<td>Geologic timescale</td>
<td>39</td>
</tr>
<tr>
<td>2–7</td>
<td>An unconformity</td>
<td>40</td>
</tr>
<tr>
<td>2–8</td>
<td>Eroded rock fragments moving from the mountains to the sea</td>
<td>42</td>
</tr>
<tr>
<td>2–9</td>
<td>Sediments to rock</td>
<td>44</td>
</tr>
<tr>
<td>2–10</td>
<td>The Grand Canyon</td>
<td>45</td>
</tr>
<tr>
<td>2–11</td>
<td>A sea cliff</td>
<td>45</td>
</tr>
<tr>
<td>2–12</td>
<td>Spheres stacked within a container</td>
<td>46</td>
</tr>
<tr>
<td>2–13</td>
<td>Poorly sorted grains</td>
<td>47</td>
</tr>
<tr>
<td>2–14</td>
<td>High and low permeability</td>
<td>49</td>
</tr>
</tbody>
</table>
2–15 Ranges of permeability .. 50
2–16 Forms of folded strata .. 51
2–17 Fault types ... 52
2–18 Unconformities .. 53
2–19 Types of traps ... 54
2–20 Stratigraphic trap ... 55
2–21 Seismic vessel ... 59
2–22 Offshore seismic data acquisition 60
2–23 2D seismic display of an anticlinal feature, with hydrocarbon indicators in red .. 61
2–24 3D display of an oil and gas field 63
2–25 Seismic display in a visualization room 63
2–26 3D seismic block ... 64
2–27 3D glasses seismic visualization 64
3–1 Methane molecule ... 71
3–2 Paraffin molecules ... 72
3–3 Naphthene molecule: cyclohexane 72
3–4 A complex combination of naphthene and paraffin groups: dimethylcyclohexane .. 73
3–5 An aromatic molecule: benzene ... 73
3–6 Produced hydrocarbon characteristics 75
3–7 Origins of hydrocarbons .. 82
3–8 Open-pit mining ... 85
3–9 In-situ recovery—steam-assisted gravity drainage 85
3–10 In-situ recovery—cycle steam stimulation 86
4–1 Typical oil and gas lease ... 95
4–2 Boiler Avenue at Spindletop, 1903 100
5–1 Spring pole drilling assembly ... 108
5–2 Cable tool rig from the 1920s ... 109
5–3 Cable tool bits ... 110
5–4 Cable tool rig schematic ... 111
5–5 Early Oklahoma field drilled with cable tools 114
5–6 Rotary drilling rig .. 118
5–7 Hoisting system on a rotary drilling rig 121
5–8 Rotary table, kelly, and kelly bushing 122
5–9 Top drive system .. 124
5–10 Bit penetration rates ... 125
5–11 Types of drill bits ... 126
5–12 Tricone and PDC bits ... 126
<table>
<thead>
<tr>
<th>Illustrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>5–13 Slips</td>
</tr>
<tr>
<td>5–14 Mud and earth pressures</td>
</tr>
<tr>
<td>5–15 Mud circulation system</td>
</tr>
<tr>
<td>5–16 Shale shakers</td>
</tr>
<tr>
<td>5–17 Casing</td>
</tr>
<tr>
<td>5–18 BOP stack ready for installation</td>
</tr>
<tr>
<td>5–19 BOP elements</td>
</tr>
<tr>
<td>5–20 Casing on a rack</td>
</tr>
<tr>
<td>5–21 Semisubmersible</td>
</tr>
<tr>
<td>5–22 Jack-up</td>
</tr>
<tr>
<td>5–23 Drill ship</td>
</tr>
<tr>
<td>5–24 Marine riser</td>
</tr>
<tr>
<td>5–25 Heave compensator</td>
</tr>
<tr>
<td>5–26 Iron roughneck</td>
</tr>
<tr>
<td>5–27 Whipstock</td>
</tr>
<tr>
<td>5–28 Directionally drilled well</td>
</tr>
<tr>
<td>5–29 Bent sub housing</td>
</tr>
<tr>
<td>5–30 Rotary steering system’s BHA</td>
</tr>
<tr>
<td>5–31 Drilling depth measurements</td>
</tr>
<tr>
<td>6–1 Controlled blowout at Sour Lake, Texas</td>
</tr>
<tr>
<td>6–2 Mud log</td>
</tr>
<tr>
<td>6–3 Subsurface map combined with geologic cross section</td>
</tr>
<tr>
<td>6–4 Foraminifera</td>
</tr>
<tr>
<td>6–5 Early experiments measuring resistivity by the Schlumberger brothers</td>
</tr>
<tr>
<td>6–6 Primitive three-wire assembly used to measure rock resistivity</td>
</tr>
<tr>
<td>6–7 A sonde, the housing for devices measuring rock properties in the formation around the wellbore</td>
</tr>
<tr>
<td>6–8 Setup to log a well</td>
</tr>
<tr>
<td>6–9 Logging truck</td>
</tr>
<tr>
<td>6–10 Offshore wireline logging unit</td>
</tr>
<tr>
<td>6–11 Portion of an annotated electric log</td>
</tr>
<tr>
<td>6–12 Coring bit</td>
</tr>
<tr>
<td>6–13 Sidewall coring gun</td>
</tr>
<tr>
<td>6–14 Technology behind SP logging</td>
</tr>
<tr>
<td>6–15 Gamma ray log</td>
</tr>
<tr>
<td>6–16 Tools used in DST</td>
</tr>
<tr>
<td>6–18 Portion of a wireline formation testing tool</td>
</tr>
</tbody>
</table>
7–1 Types of casing ... 189
7–2 Cementing the casing 191
7–3 Centralizer for vertical well casing 191
7–4 Centralizer for horizontal well casing 192
7–5 Christmas tree for an onshore, high-pressure gas well ... 193
7–6 Wet tree .. 194
7–7 Perforating gun .. 197
7–8 Gravel pack ... 199
7–9 Smart or intelligent well 200
7–10 Fracture-induced production flows 201
7–11 Fracturing equipment 204
7–12 Plug-and-perf .. 208
7–13 Sliding sleeve ... 209
8–1 Typical oil and gas phase diagram 215
8–2 Typical black oil phase diagram 218
8–3 Typical volatile oil phase diagram 219
8–4 Typical retrograde gas phase diagram 220
8–5 Typical wet gas phase diagram 221
8–6 Relative permeabilities for concentrations of oil and water in a typical reservoir rock ... 225
9–1 Gas evolution in the tubing 228
9–2 Pressure profile in the reservoir over time ... 229
9–3 Natural drive mechanisms 230
9–4 Production phases of an oil well 232
9–5 The effect of oil production on the oil-water contact ... 234
9–6 A beam pumping unit (pump jack) operating a bottomhole pump 235
9–7 Pump jack ... 235
9–8 Positive displacement pump in action 237
9–9 Electric submersible pump 238
9–10 Offshore submersible pump 240
9–11 Operating sequence of a well equipped with gas lift valves 241
9–12 Operating sequence of a well equipped with a plunger lift 243
9–13 Map view of a five-spot waterflood pattern ... 246
9–14 Map view of a five-spot waterflood pattern with the injection well initially surrounded by producers 249
Illustrations

9–15 Cross section of a fire flood ... 250
9–16 Cross section of a steam drive project 251
9–17 Steam generators operating in a steam drive project 252
9–18 Pump jacks in a steam drive operation 252
9–19 Cross section of a WAG (water alternated with gas) project ... 254
10–1 Field processing flow diagram 258
10–2 Horizontal separator .. 259
10–3 Vertical separator .. 259
10–4 Glycol treater .. 264
10–5 Emulsion ... 265
10–6 Heater treater ... 266
10–7 Horizontal free-water knockout (FWKO) 267
10–8 Gun barrel FWKO .. 268
10–9 Typical oil field processing facilities 269
10–10 Natural gas processing ... 271
10–11 Gas well meter .. 274
10–12 Lease automatic custody transfer (LACT) unit 277
10–13 An FPSO (floating production, storage, and off-loading vessel) 279
10–14 Typical subsea processing scheme 281
10–15 Subsea processing unit at Total’s Pazflor Field offshore Angola ... 281
11–1 Impact of a workover on production 285
11–2 Workover rig .. 287
11–3 Lubricator ... 288
11–4 Coiled tubing diagram .. 289
11–5 Coiled tubing rig .. 290
11–6 Remedial operations to reduce water production 292
11–7 Gas and water coning .. 294
11–8 Multiple-zone completion .. 300
12–1 US oil and gas production by the fifty largest US producers... 304
12–2 A roughneck takes a break .. 312
12–3 Distribution of effort in E&P ... 314
12–4 Personnel in-house and outsourced 316
13–1 Numbers of US firms in the oil and gas industry 317
13–2 Migration of production processes 318
13–3 Attributes of clear, successful strategies 320
13–4 Generic examples of E&P company strategies 321
13–5 Cost competitiveness benchmark chart 323
13–6 Digital oil field scheme 326
13–7 How E&P and manufacturing companies
 compete .. 329

Tables

3–1 Typical constituents of natural gas 75
3–2 Crude oil classifications 78
6–1 Resistivity logs ... 166
7–1 Fracking fluid additives 205
8–1 Field characteristics of fluid types 217
10–1 The pros and cons of separators 260
How Did We Get Here?
The History of Production

What is history but a fable agreed upon?
—Napoleon Bonaparte (1769–1821)

Oily Beginnings

In 1859, a character with the unlikely name of Uncle Billy reached down with a tin scoop into the hole he had just drilled, drew a sample of the fluids, and started the era of petroleum production. He smelled it; he tasted it; he rubbed it between his fingers and then giddily dispatched his goffer to town to notify Colonel Edwin Drake he had just struck oil.

Most petro-historians start with the travails of the colonel that led up to spudding the Drake well. But this is a book about production, not drilling, so it should start at the moment when he arrived on the scene, flushed with excitement at the news that his driller, Billy Smith, had hit an oil deposit 69.5 feet below ground, near the oil seeps in Titusville, Pennsylvania. Drake dragged an iron water pump from the equipment pile, lowered it into the well with sections of threaded shaft. He rigged the pump handle to the oscillating arm that Uncle Billy used to drive his cable tool drilling rig and began the world’s first “modern” oil production—into a metal washtub.

The opportunities to improve Drake’s simplistic operation abounded. Over the next century and a half, engineers tirelessly devised ingenious ways to move the oil (and eventually gas) from its resting place in the ground to the pipelines and trucks that hauled
Rotary drilling continued the inexorable march of efficiency that let oilmen reach deeper, more hidden, and more nearly unreachable targets and bring increased volumes of oil to market.

It was overproduction of oil that triggered public policy remedies. As the giant oil fields of Texas and Oklahoma came onstream at the beginning of the twentieth century, a stampede to produce every oil field as rapidly as possible (fig. 1–9) laid waste to the economics of the industry. Prompted by the court-established rule of capture, any landowner could—and usually did—drill a well to tap the petroleum that lay beneath. On the 92,000-acre East Texas Field, 3,612 wells were drilled. Wasted oil ran down the streams and bayous. Oversupply drove prices to 10 cents per barrel. In 1931, the governor of Texas declared martial law to control the chaos.

Henry L. Doherty, an oilman and firebrand of some repute, captured the imagination and support of the conservationists. Together, they badgered the governments of the largest producing states—Texas, Oklahoma, Kansas, Colorado, and Illinois—into forming the Interstate Oil Compact Commission (IOCC). Initially, the IOCC instituted voluntary cutbacks of oil production, but in 1935, mandatory reductions, called prorations, were introduced. The Texas Railroad Commission and its counterpart agencies in the other states set and enforced the rules. The federal government supported them by passing the Connelly Hot Oil Act, which prohibited moving excess oil production across state lines. It also established the authority of the state commissions to regulate well spacing, limit individual well production rates to protect reservoir pressures, and encourage unitization.

Everyone got something at the stroke of a pen: Proration meant higher, stable prices for the producers; conservationists and environmentalists were mollified; the state bureaucracies had a legitimate empire to administer; and the science of petroleum engineering gained new prominence.

To prorate, every well needed a documented, authorized maximum efficient rate (MER) of production. Engineers had to take into account the reservoir pressure, porosity, permeability, gas-to-oil ratio, water cut, and more at various production rates.
Metamorphic rocks, the third major category of rocks, are sedimentary rocks that have been heated by proximity to igneous rocks or magmas or have been subjected to the high pressures and temperatures of deep burial (subduction) within the earth’s crust. Slate is metamorphic rock formed from shale, marble is formed from limestone and dolomite, and quartzite is formed from sandstone. Generally, some of the oldest known rocks are metamorphic. They can be either sedimentary or igneous rocks that have been deeply buried and then sometimes uplifted close to the surface (again, by tectonic forces) where they are seen today.

Earth’s history is one of repeating cycles of deposition, mountain building, and erosion. Coastlines moved back and forth as continental plates were pushed around and as volcanoes and rising mountains reformed continental margins. What was once a near-shore environment where sands and silts were deposited became an onshore region far from the sea or an offshore area where the currents carried nothing but the finest silts and clay. As a consequence, sedimentary layers were laid down with varying rock types (lithologies), alternating one over the other. Familiar vistas of the Grand Canyon (fig. 2–10), of mountainsides and sea cliffs (fig. 2–11), and even of local highway cuts throughout the countryside show layers of sandstone, shale, and limestone in infinite and stunning varieties of sequences often highly contorted into remarkable folded forms.
WHAT’S IN THE CONTAINER?
THE PRIZE

FOR FOUR-FIFTHS OF OUR HISTORY, OUR PLANET WAS POPULATED BY POND SCUM.

—J. W. SCHOFF (1942–), ASTROBIOLOGIST, UNIVERSITY OF CALIFORNIA, LOS ANGELES

Of course, people in the oil patch don’t call it a container—they say “reservoir.” Sometimes they define it further, classifying it as conventional or unconventional reservoir. And then, in the unusual circumstances of, say, western Canada, there are the sticky hydrocarbons that some call tar sands or more often oil sands. Some differentiate tar sands and oil sands from other conventional reservoirs only because of the nonconventional extraction methods: mining. By the same token, most call shale reservoirs unconventional because of their reservoir characteristics. But whatever names people use, the reservoir contains the fluids they are interested in—oil and natural gas—and some fluids they are not—water and other miscellaneous gases.

A better understanding of the nature of the reservoir’s contents comes from running through some of the factors that have varied over the history of the container—pressure, temperature, and time. These are crucial to the formation of hydrocarbons. They have an impact both on the kind of hydrocarbons that are present and on the way operators can produce them.
mineral owners includes a time limit, often three to five years. If the obligations, usually to drill, have not been met within that time frame, the royalty interest held by the company reverts to the mineral interest owner.

The acquiring parties are known as the lesees or working-interest owners (WIOs), and the mineral owners are known as the lessors or royalty-interest owners (RIOs). The lessees may continue to acquire other mineral leases until they have accumulated enough to drill an exploratory well, a wildcat, and to follow up any discovery with development wells. It is the development wells that will return the profit from the venture.

The Negotiation

When a landman knocks on the door of the mineral owner, a discussion, or better, a negotiation, will revolve around a number of points.

• Signing bonus for the mineral owner, which may amount to a few or thousands of dollars per acre. Where shale oil and gas have been the targets, bonuses in excess of $15,000 per acre have been offered.
• Royalties for the mineral owner, usually between one-eighth and one-quarter of the revenue from the venture, but sometimes as high as one-half.
• Obligations, an important one being the period in which drilling operations must commence, often three years, but perhaps only sixty days.
• Primary term, the period in which production must begin, normally five or ten years.
• Amount of the mineral owner’s acreage that will be in the prospective drilling unit, which determines the mineral owner’s share of the revenues from the first well.
• How much of the prospective mineral owner’s land will eventually be “held” by production—the acreage assigned to the producing wells.