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Preface

Fluid flow in wellbores occurs during various phases of a well’s life. Our ability to optimize each flow process
depends largely on grasping the underlying physics so that we can mathematically describe the process involved.
At a well’s inception, drilling operations require mud circulation, causing considerable heat exchange between
the colder fluid and the warmer formation. In the event of a blowout, because of lost circulation or unexpected
overpressured zone, we encounter transient two-phase flow as the formation interacts with the wellbore prema-
turely. When we initiate flow from the formation by design, such as in a drillstem or production test, flow of either
a single-phase or a multiphase fluid occurs. As the fluids ascend the wellbore, the warm formation fluid begins to
exchange heat with the colder formation above it. Therefore, heat flow is always coupled with fluid flow in actual
wellbores.

In this book, we attempt to address the coupled fluid/heat flow issue as encountered in many practical produc-
tion/operation problems, including in drilling. Both steady- and unsteady-state transport problems are considered.
Even when steady fluid flow is maintained during circulation, injection, or production modes, unsteady heat trans-
port in the formation occurs nonetheless. Fluid circulation during drilling and workover operations and injection
of annular gas in a gas lift operation are cases in point. We also examine fully transient processes of fluid and heat
flows, such as those in drillstem or production testing.

Before we undertake a detailed analysis of each operational problem, we introduce the reader to some basic
concepts, starting with the rudiments of single-phase flow (Chapter 1) and moving to more-complex issues of
two-phase flow modeling (Chapters 2, 3, and 4). Chapter 5 is a new addition to encapsulate the lessons learned
from application of the models in various field settings discussed in earlier chapters. Then, the principles of heat
conduction in the formation, as well as the elements of fluid flow and the associated heat flow, are discussed in
Chapter 6, followed by a new Chapter 7 showing various applications in coupled fluid/heat flow problems.

Chapter 8 introduces analytical models in various bundled-tube settings, where production and/or injection
occurs in multitubing configurations. Chapter 9 presents aspects of modeling transient fluid and heat flow prob-
lems. Well integrity issues pertaining to annular pressure buildup, sustained casing pressure, and gas lift valves
form the cornerstone of Chapter 10; both appropriate models and field examples exemplify the lessons learned
from coupled fluid/heat flow modeling. Along with Chapters 5 and 7, Chapter 10 is new to this edition of the book.

Chapter 11 presents various analytical models pertaining to drilling operations. Here, simple analytical tools
attempt to capture the evolution of wellbore temperature profiles in various operational settings, followed by
an estimation of the static formation temperature, leading to determination of the geothermal gradient. There-
after, estimating the spilled volume in uncontrolled wells is pursued for both gas and oil wells in a probabilistic
framework.

Chapter 12 attempts to capture various aspects of production operations with surveillance data. In this context,
production of organic solids, such as paraffins and asphaltenes, is addressed. Two field studies involving coupled
modeling of reservoir/wellbore/surface network emphasize the lessons learned from a holistic approach. Finally,
Chapter 13 discusses some aspects of production logging; flowmeter and temperature responses are the essence
of this discussion.

Besides introducing three new chapters (Chapters 5, 7, and 10), this new edition of the book has updated all
others wherever appropriate. Our expectation is that the three new chapters illuminate application of diverse flow
problems that can be tackled with the basic principles learned. This edition is expected to serve a variety of read-
ers, from advanced senior and graduate students to researchers and practicing engineers. The overall philosophy
is to show not just how to solve a given problem but also why the recommended approach is preferred. Illustrative
examples presented at the end of each major section reinforce the principles learned. In other words, striking a
balance between theory and practice has led us to the avoidance of a proverbial cookbook approach.

Although over the last seven decades hundreds of papers have been written on the topics of multiphase flow
and heat transfer, here we have attempted to present only those that pertain to solving some of the wellbore flow
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Chapter 1

Overview

1.1 Single-Phase Flow

Fluid flow, in a variety of forms and complexities, is a basic entity that must be dealt with in the production of
hydrocarbons. In its rudiments, single-phase gas or oil production and water injection form the core of all flow
problems. Therefore, Chapter 1 discusses the mechanical energy balance equation, which relates pressure drop
to its various components for single-phase flow. Next, the components of total pressure drop—static, kinetic, and
frictional—are discussed. In addition, flows in tubing/casing annuli and horizontal wells, which are of particular
interest to petroleum engineers, are briefly discussed.

1.1.1 Mechanical Energy Balance. A simple one-dimensional (1D) analysis of single-phase gas or liquid flow
is best made with the aid of a schematic, as shown in Fig. 1.1. The channel, inclined at an arbitrary angle ¢ with
the horizontal, shows upward flow of the fluid. We use the industry convention that the vertical axis z is positive
in the downward direction. For the present, we consider only the steady-state case and assume that pressure, at
any point in the cross-sectional plane normal to flow, remains the same. With these simplifications, we derive the
momentum balance equation.

Conservation of Momentum. The sum of forces acting on the fluid element, shown in Fig. 1.1, equals the change
of momentum of the fluid. The forces acting on the fluid element are those owing to pressure p, friction F, and
gravity. Referring to the differential length dz of Fig. 1.1, we write

z+dz

Fig. 1.1—Momentum balance for a fluid element.
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pA —(p+dp)A +dF + A (dz) g p sin o= change of fluid momentum. ........................... (1.1a)

If the fluid mass flow rate is w and its velocity is v, then its momentum equals wv. For the general case of tran-
sient flow, when both flow rate and velocity change along the flow direction, fluid momentum change is given by
(w + dw) (v + dv) —wv. Therefore,

PA-(p+dp)A+dF+Ady) gpsinoa=w+dw) v+dv)—wv. ... (1.1b)
Simplifying, we obtain

—Adp+dF+A(dz)gpsina=wdv+vdw. ... ... (1.2)
Usually, the mass flow rate is invariant; that is, dw = 0, leading to

—Adp+dF+A(dz) gpsin o=wdv. .. ..o (1.3)

Dividing both sides of Eq. 1.3 by Adz, we obtain

—(dp/dz) + (dp/dz) .+ gpsin oo— (W/A)dv/dz=0 ... .. ... . (1.4)
or

(dp/dz) = (dp/dz) + (dp/dz)y + (dp/dz),y, oo (1.5)
where

— (PR = =g PSINO o oot (1.6)
and

—(dp/dz),=W/A)dW)dz=pvdW)/dz. ... . (1.7

1.1.2 Components of Pressure Gradient. Eq. 1.5 shows the total pressure gradient is the sum of the frictional gradi-
ent (dp/dz),, the hydrostatic gradient (dp/dz),,, and the accelerational gradient (dp/dz),. Of these three terms, perhaps
the static gradient is the easiest to estimate because it only requires knowledge of the fluid density and well-deviation
angle. Because gas density depends on pressure, the static term will vary along the well for gas wells. Usually such
variation is small, and relatively simple equations of state can be used to account for it. To some extent, even for
single-phase oil production, oil-density variation with well depth, owing to temperature and dissolved gases, must be
taken into account. The same comments apply to the estimation procedure for the kinetic head (Eq. 1.7).

For incompressible flow (gases at very high pressures and liquids) in a straight pipe with no change in cross-
sectional area, the change in fluid velocity with axial distance (dv/dz) is generally negligible. However, for gases
at moderate and low pressures, and especially at high velocities, the kinetic energy loss can be a significant portion
of the total pressure loss and must be accounted for properly. Computational complications that arise for gas flow
have led to a number of correlations for calculating pressure drop in a wellbore. We recommend the widely used
Cullender and Smith (1956) method for computing pressure drop in a gas well, when the accelerational compo-
nent becomes negligible.

The frictional pressure gradient is generally represented by

(dp/ldz)r =FPPA2G d). oo (1.8)

In this book, we are using the Moody friction factor because of its popularity in the oil industry. The alternative is
to use the Fanning friction factor, which is one-quarter the value of the Moody friction factor. In that case, Eq. 1.8 will
change to (dp/dz), = 2fi*p/g, d), reflecting the lower value of the Fanning friction factor. Friction factor f depends on
fluid turbulence and pipe roughness. The friction factor is usually expressed as a function of Reynolds number
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and roughness factor €/d. The chart for friction factor as a function of Reynolds number with pipe roughness as
a parameter is shown in Fig. 1.2, whereas Fig. 1.3 presents the chart for estimating relative roughness. Note, &/d
represents the relative roughness in both figures.

At low Reynolds numbers (Re < 2,100), the flowing-fluid elements do not interact with each other, and the flow
is called laminar. For laminar flow in either rough or smooth pipes, friction factor is inversely related to Reynolds
number,

O (1.102)
Re dvp
when
RE <2000, — oo oo (1.10b)

At high Reynolds numbers (Re > 4,000), the flow is termed turbulent. During turbulent flow, the friction fac-
tor depends on both Reynolds number and pipe roughness. For smooth pipes, such as plastic pipes and tubulars
coated with polyvinyl chloride lining, friction factor can be estimated reliably from the Blasius equation,

=032 (R OB, e (1.11)
when
Re > 2,100, ... (1.12)

For very high Reynolds numbers (Re > 50,000), Eq. 1.11 is slightly modified as f= 0.184 (Re)™2.

Eq. 1.11, of course, is invalid for rough pipes, which need the use of a chart, such as that in Fig. 1.2. Although
a chart is useful for all types of pipe roughness, chart reading is tedious and is not easily amenable to computer
calculations. A number of equations, relating friction factor to Reynolds number and pipe roughness, have been
proposed over the years and are in fair agreement with the original friction factor charts. We recommend the fol-
lowing expression proposed by Chen (1979), modified to yield Moody friction factor

4
= P (1.13)
/ e/d  5.0452 ’
4 log - logA
3.7065 Re
where € is pipe roughness and the dimensionless parameter A is given by
1.1098 0.8981
A=E/D +(7‘149) R (1.14)
2.8257 Re

Unlike many other expressions, which require iterative solutions for the friction factor, Eq. 1.13 is explicit
and, therefore, computationally efficient. de Nevers (2004, p.187) suggested a simpler explicit formulation, with
somewhat lesser accuracy, given by

e) 10°7"
f—0.0055{1+{20,000(5)+R—} } .................................................. (1.15)

(<

More recently, Ghanbari et al. (2011) have presented a similar explicit formulation with improved accuracy,
given by

e/ D\ 2731052 —2.169
=4<-1.521 —_— + R 1.16
/ { OgK 7.21) ( Re ) (110

Note that Egs. 1.15 and 1.16 have been modified to represent Moody friction factor. The evaluation of various
terms in Eq. 1.13 is relatively easier for flow of single-phase fluids, even for gases, than for two-phase mixtures.
In the latter case, estimating the average density and friction factor can be challenging because these are complex
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functions of fluid properties and flow conditions. Chapter 2 discusses various approaches taken to evaluate these
entities in two-phase flow.

1.2 Flow in Nonisothermal Systems

Fluid temperature in the wellbore often varies significantly with depth, and sometimes with time. Many of the
fluid properties that influence pressure drop, such as density and viscosity, are greatly influenced by the fluid
temperature. Therefore, we cannot overemphasize the importance of accurate fluid temperature estimation as a
function of well depth and production or injection time. This calculation can be performed by a proper energy
balance on the fluid/wellbore system, as shown in Chapter 6. For single-phase liquid flow, the expression for fluid
temperature, 7, may be simplified with minimal inaccuracy to

T, =T, 4 (1= € ™) eSO/ Ly oo oo (1.17)

where the parameter L, which is a function of wellbore heat-transfer coefficient U and formation heat conductiv-
ity k,, is defined by

L= Tk (1.18)
CcpW ke+(rUTD)

In Eq. 1.18, T, represents dimensionless temperature, which is a function of dimensionless producing time,
ty = ou/r, %

T, =In[ e +(1.5-03719¢7 )|Jr, | ... (1.19)

For a complete discussion of Egs. 1.17 through 1.19, please refer to Chapter 6.
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Fig. 1.2—Moody friction factor chart for turbulent flow (Moody 1944).
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Fig. 1.3—Relative roughness of pipes (Moody 1944).

1.3 Flow in Annulus

Although flow through a tubing string is the most common configuration, drilling, as well as many comple-
tions, dictates modeling for flow up the tubing/casing annulus. The presence of two walls makes flow through
an annulus different from that through ordinary circular strings. The classical work of Bird et al. (2002) shows
that Eq. 1.8 is also applicable for such geometry, although the correlation for friction factor must be modified
to reflect greater wall shear. For laminar flow in a concentric annulus, the Moody friction factor f, is given by
Bird et al. (2002) as

f _ 64 (1-K)’
= R TSR LK |
1-K* In(/K)

where K is the diameter ratio, d,/d.. Following the studies of Gunn and Darling (1963) and Caetano et al. (1992a),
we recommend expressing turbulent flow in a concentric annulus as

1

jo,zis exp[ —(Re-3000)/10° |

0.5

5,
fo &

CA

05
0.455xp[7(R673000)/106:|
=4log| Re fCA(F_pJ

CA
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Fig. 1.4—Friction geometry parameter for concentric and eccentric annuli.

where F, is the laminar-flow friction factor geometry parameter and F, is the ratio of friction factor for the annu-
lus to that of a circular channel with the same d,. Therefore, from Eq. 1.21, F, for a concentric annulus is given by

(1-K)*

TTRE IDRT ]
1-K> In(/K)

Understanding mud flow behavior in horizontal and near-horizontal drilling requires fluid flow through eccen-
tric annuli. For such flows, eccentricity (E) is defined as

F,=

E=D/(d=d), - e (1.23)

where D is the distance between the pipe centers. The values of F, as a function of K and E, are shown in Fig. 1.4.
For an eccentric annulus, the friction factor equation is similar to Eq. 1.20:

4 4(1-K)?

ECA —Em. .................................................................. (1.24)

In Eq. 1.24, n, incorporates the effect of eccentricity factor E, and ¢ is a function of 7,. A complete treatment of
flow through eccentric annuli is beyond the scope of this book; for further details, the reader is directed to Caetano
et al. (1992a). Chapter 4 discusses two-phase flow in an annular geometry.

1.4 Flow in Horizontal Wells

The interest in horizontal wells stems from significant increases in productivity and ultimate recovery in certain
cases, such as unconventional reservoirs. Initial efforts by Dikken (1990) and Novy (1995) to couple the wellbore
with the reservoir using analytic approaches considered frictional effects only. In other words, fluid ingress along
the well length leading to momentum and related effects was ignored in those formulations.

Estimating pressure drop in horizontal wells presents a number of difficulties. First, pipe-surface roughness is a
difficult entity to discern because of perforations along the well length in a cased borehole. Because most comple-
tions occur openhole, complexity increases significantly to ascribe a friction factor for an ill-defined surface—that
is, the formation. The second factor revolves around fluid influx or changes in momentum that occur along the
well length.

Experimental studies of Asheim et al. (1992), Ouyang et al. (1998), and Yuan et al. (1999) in perforated hori-
zontal pipes, allowing fluid ingress along the well length, led to the development of several friction factor correla-
tions. Of these, the results of Ouyang et al. (1998) and Yuan et al. (1999) are noteworthy.

Ouyang et al. (1998) presented the following Moody friction factor correlations for laminar and turbulent flows,
respectively.

f= ﬁ(1 +0.04304Re, ") L (1.25)
Re
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and

f=1,(1-00153Re )

where f, is the no-wall-flow friction factor, which can be estimated from Eq. 1.13. Note, Re,, represents the wall
Reynolds number, which is based on the pipe inner diameter (ID) and equivalent inflow velocity per unit wellbore
length.

A somewhat different approach led Yuan et al. (1999) to obtain the following expression for the total or apparent
friction factor, f; (Moody friction factor), for fluid ingress along the borehole.

f,=aRe’+C, 2d¢%, ................................................................ (1.27)
where "

a=10219.50-3.252L — 887510762 + 537X 1020 = 0.075 . .+ (1.28)
and "

2
b=(-124x10°97"" +42.4) [ij
.

F1.577x10°9 2% L 55X 1079 + 231X 1020+ 0.085. . ..o oo (1.29)

For (¢,/9,) <0.02, C,=2.3, and for (¢;/g,) > 0.02, C, is given by

—0.099
C = 4.25(i] e (1.30)
4,

Experience shows that pressure drop in horizontal wells becomes important in high-transmissivity reservoirs,
where the pressure drop in the wellbore becomes comparable to that in the formation. When the wellbore pressure
drop becomes important, in most cases, the frictional component becomes the dominant mechanism. Chapter 4
discusses two-phase flow in horizontal wells.

Summary

The objective of this introductory chapter is to acquaint the reader with the rudiments of single-phase flow, which
forms the backbone for understanding the mechanics of two-phase flow. Here, we attempted to capture some ele-
ments of fluid flow through conduits of various complexities, such as annuli and horizontal wells, and when fluid
flow is accompanied by heat flow. Subsequent chapters discuss these elements in detail.

Nomenclature

a = parameter defined by Eq. 1.28, d., d, = casing or tubing diameter, in.
dimensionless D = distance between pipe centers in
A = cross-sectional area for fluid flow, ft? Eq. 1.23, ft
A,, A, = cross-sectional area available for gas or E = eccentricity factor, dimensionless
liquid to flow, ft, f = friction factor, dimensionless
b = parameter defined by Eq. 1.29, f, = no-wall friction factor, dimensionless
dimensionless . .
) . fea = friction factor of concentric annulus,
¢, = heat capacity, Btu/(Ibm-°F) dimensionless
¢ = parameter defined by Eq. 1.27, feca = friction factor of eccentric annulus,
dimensionless dimensionless
d = pipe or well diameter, in. fr = apparent friction factor, dimensionless
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(dp/dz)
(dp/dz),

(dp/dz)
(dp/dz),
44

4qi
Fip

r

to

Re

Re,, Re,

Re

Re

w

force, Ibf

friction geometry parameter,
dimensionless

acceleration because of gravity, ft/sec?
conversion factor, 32.17 Ibm-ft/Ibf-sec?
geothermal gradient, °F/ft

fluid enthalpy, Btu/lbm

formation permeability, md

earth conductivity, Btu/(hr-ft-°F)

annulus/tubing diameter ratio,
dimensionless

relaxation distance parameter, ft™!
pressure, psi
pressure gradient, psi/ft

accelerational (kinetic) pressure gradi-
ent, psi/ft

frictional pressure gradient, psi/ft
static pressure gradient, psi/ft

average flow rate over incremental
length, ft*/hr

influx rate from each perforation, ft*/hr
wellbore radius, ft
outside tubing radius, ft

Reynolds number (= dvp/u),
dimensionless

Reynolds number for gas (= p,v d/

u,) or liquid phase (= pv,d/u,),
dimensionless

Reynolds number for mixture
(= p,v,diu,,), dimensionless

wall Reynolds number, dimensionless

production, injection, or circulation
(mud) time, hours

> TV & o =

n

Subscripts

c
0

t

to
wb

dimensionless time, @1/r,>
(= 2.64 x 10°k/dpic,r,?)

formation temperature at initial condi-
tion or at any radial distance, °F

fluid temperature, °F

dimensionless temperature
= (2nk,) (T,, - T.)/Q

wellbore fluid temperature, °F

overall-heat-transfer coefficient,
Btu/(hr-°F-ft)

fluid velocity, ft/hr
mass flow rate of fluid, Ibm/hr
any vertical well depth, ft

gas-law deviation factor,
dimensionless

wellbore inclination with horizontal,
degrees

parameter given by Eq. 1.14,
dimensionless

oil viscosity, cp
pipe roughness factor, ft
perforation density, 1/ft
density, Ibm/ft}

parameter for Baker flow pattern map,
dimensionless

parameter used in Eq. 1.24

casing

oil

tubing

tubing outside

wellbore





