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Foreword
Data-Driven Reservoir Modeling is intended to introduce a technology that is relatively new to 
petroleum engineers and geoscientists whose day-to-day job responsibilities always bring them to 
junctures where critical technical decisions need to be made and strategies need to be established. 
The technology covered in this book adds another decision-making tool to the arsenal of upstream 
technologists of the petroleum industry. This book should also be useful to petroleum engineering 
and geosciences undergraduate students in their junior or senior year, as well as to graduate students 
with some degree of exposure to the principles of petroleum engineering field operations, petroleum 
geology, and petroleum geophysics.

The aim of this book is to present a methodology that is rather new to the petroleum engineering 
community and is particularly suited to the application of data analytics to physical problems of 
reservoir engineering for tracking the state of dynamics with the goal of strengthening the decision-
making process. With the help of the pragmatic approach provided in this book, data-driven model-
ing can be effectively used in field planning and development studies. 

In today’s field practices, zillions of bytes of information are generated daily. Every piece of 
data carries key signatures about the physical properties of the system being studied and about the 
ongoing physical and thermodynamic processes. The collected data can be so massive that they 
overwhelm manpower, while the available computational power may not permit conducting a com-
prehensive analysis. In addition to these issues, if we are dealing with data that are generated by 
relationships that are not understood or, at best, vaguely understood (i.e., all the physics and ther-
modynamics of the ongoing processes are not well known), reservoir analysis becomes even more 
challenging. In times like these, machine-learning-based algorithmic protocols (intelligent systems) 
come to the rescue. These systems are knowledge-based intelligent systems that emulate not only 
human intelligence but also the reasoning and decision-making aspects of human intelligence. In 
our daily operations, we are always confronted with uncertain data; here, the strategy is to exploit 
imprecision and uncertainty to achieve tractable, robust, and low-cost solutions. This is why captur-
ing associations and discovering existing regularities in a big data set can become a reality even if 
the diversity of the data is large and the relationships between independent and dependent variables 
are understood only dimly.

The book assumes some degree of familiarity with the upstream petroleum industry vocabulary 
and the physics of flow in porous media. In order to maximize the benefits from the book, one also 
needs to be knowledgeable about transport processes and the thermodynamics of oilfield fluids. 
With that knowledge bank in place, it will be possible to critically analyze the results generated. 
Being conversant with computers on various platforms will be helpful if the reader is interested not 
only in using this class of solutions but also in developing such a catalogue of solutions.

The author of the book, Shahab Mohaghegh, is a leading authority in the application of data ana-
lytics in petroleum engineering. His writing style is extremely lucid and informative. Each chapter 
of the book is well structured and possesses logical continuity, clarity, and thoroughness. In my 
view, the book brings a wonderful opportunity to explore new modeling frontiers that are applicable 
to hydrocarbon reservoirs. No matter what type of reservoir or production engineering problem you 
are working on, Big Data analytics, when applied properly, has the potential to guide and streamline 
the solution work flow. Here, I present a summary of how the author covers topical areas of data-
driven reservoir modeling. 
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Chapter 1 briefly reviews the reservoir models that are currently used in studies related to res-
ervoir management and discusses the challenges of history matching, which is a critically impor-
tant and notoriously difficult application for reservoir characterization. The chapter continues with 
a discussion of top-down modeling (TDM) and discusses how physical processes and geological 
characteristics collectively play an important role in generating the response function from the field 
(typically, pressure-transient and/or rate-transient data). 

Chapter 2 provides a succinct review of the theory of data-driven problem-solving methodology. 
This chapter stresses the importance of powerful domain expertise in applying machine learning and 
pattern recognition to the class of problems studied in the book.

Chapter 3 outlines the historical progression of reservoir modeling and discusses the critical junc-
ture where a decision needs to be made on the levels of accuracy and computational overhead that 
are faced during a full-fledged simulation study. What makes the decision even more challenging is 
that engineers who are conducting reservoir simulation studies almost always find themselves in the 
middle of a sea of uncertainties.

Chapter 4 concisely covers Big Data analytics methodologies, including data mining, artificial 
intelligence, artificial neural networks, and fuzzy logic, with greater emphasis on the last two. This 
chapter should be especially useful for readers who do not have great familiarity with data analytics 
practices.

Chapter 5 accentuates the importance of good understanding of the conventional reservoir-mod-
eling techniques and principles of machine learning to appreciate the advantages and disadvantages 
of each of these two broadly dissimilar approaches.

Chapter 6 reminds the reader that there are empirical models that use the data collected in ana-
lyzing the performance of a hydrocarbon reservoir (e.g., decline curve analysis). This chapter also 
discusses some of the weaknesses that we face in the application of such empirical methodologies.

Chapter 7 introduces the concept of TDM as a new work flow in data-driven reservoir-modeling 
applications. The principal strength of TDM is recognized in terms of its encompassing approach, 
such that all available field measurements can be integrated in a seamless manner. What is more 
striking here is that even if we do not have a complete understanding of the dynamics of the ongoing 
physical phenomena, the TDM protocol is capable of generating a representative comprehensive 
model that incorporates all of the available data.

Chapter 8 discusses the spatio-temporal nature of the data base that is inevitably faced in reservoir 
engineering studies. The nonlinear nature of the process dynamics and parameters that are involved 
in the processes undoubtedly makes reservoir modeling even more challenging. The matters that 
need to be addressed at this stage typically include further simplification of the model. However, 
most of the assumptions that are used in such simplifications may not be compatible with the nature 
of the data collected, because these data internally carry many critical implications of the nonlin-
earities. Along these lines, the impact of static and dynamic parameters on the response functions 
is discussed.

Chapter 9 addresses the nonunique nature of inverse solutions (in this case, history-matching 
protocols). Like any other inverse model, a model that matches the history successfully cannot guar-
antee the accuracy of the predictions; however, a good-quality history match increases the level of 
confidence about the performance of the model. In a history-matching application spatio-temporal 
properties are accommodated with the help of artificial neural networks. In this process, a critical 
step is the correct prioritization of the relevance of such parameters. This enhances the overall opti-
mization of the process that is being studied.

Chapter 10 covers the importance of conducting a critical analysis of the results of the TDM. Such 
an analysis will provide an opportunity to optimize the process that is being modeled and at the same 
time will establish realistic bounds to the results that are being generated. These limitations can be 
accommodated by keeping realistic and practical bounds on the operational parameters. In view of 
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the high computational speeds that can be achieved by the TDM approach, it will be possible to con-
duct an expansive Monte Carlo simulation study using a large number of scenarios. In this chapter, 
the dynamic nature of the TDM is reiterated, just to ensure that the user does not forget to update the 
overall structure of the TDM whenever necessary.

Chapter 11 presents a compendium of three case studies involving mature oil fields from different 
corners of the world. 

Chapter 12 discusses the limitations of data-driven reservoir modeling, indicating the importance 
of the representative nature of the data available in developing the model. This becomes especially 
important because the data used also carry vital information about the physical processes within the 
system. 

Chapter 13 provides a discussion based on the author’s extensive experience about what one 
might expect to see in the future concerning the use of data-driven reservoir modeling. One poten-
tial area where this type of modeling will be handy is in the analysis of fiber-optic data-collection 
systems that are finding applications in long horizontal wellbores. For example, it is believed that 
even small temperature variations captured in the horizontal well will provide critically important 
information about the identification of the producing and nonproducing zones. 

Finally, extensive references are provided for any reader who is interested to learn more about 
data-driven reservoir modeling.

We hope you now have a good idea of what this volume is all about and what it can do for the 
problems that you are working on. I am confident that this book will equip you with what you need 
to know in order to develop realistic solutions for problems you may have thought that you would 
not be able solve. Here is your opportunity.

Turgay Ertekin
Professor of Petroleum and Natural Gas Engineering

Pennsylvania State University
University Park, Pennsylvania, USA

26 November 2016
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Chapter 1

Introduction

We are living in an interesting time. Let us put the speed at which technology is changing our world 
in perspective. Take the example of the printing press vs. electronic mail or email. The printing  
press was invented in the fifteenth century and changed how people communicated. It was the most 
common mode of communication for more than 25 generations.1 It still is an integral part of our 
lives. But no one doubts that many of its functions are now performed by new technologies such 
as email, the Internet, eBooks, eNews, and so on. Furthermore, email became popular only after 
the 1990s. It quickly grew to become the most used mode of communication among people of all 
persuasions. However, now, in less than only one generation, it is losing its prominent position in 
human communications to other newly invented communication modes. The new generation hardly 
uses email. Email is now being replaced by text messages and social network communications. 
Email, such a step-change in our communications, is ready to relinquish its prominence in less than 
one generation. This is the speed at which the technology is moving forward. 

The modern oil industry is a bit more than one hundred years old.2 Most technologies that are 
currently in use by petroleum engineers and geoscientists can be traced back to their development 
for the oil industry during the mid-twentieth century.3 Some of our newer technologies (e.g., hori-
zontal wells, seismic survey, measurement while drilling) are less than a few decades old. This 
book presents an example of a new and quite recent technology that is making its way into the oil 
and gas industry. This book is dedicated to application of artificial intelligence and data mining 
in the upstream oil and gas industry, and specifically to their application to build comprehensive 
reservoir models.

1.1 Reservoir Models for Reservoir Management
It has been said that all models are wrong, but some models are useful (Box 1976). One of the objec-
tives of reservoir engineers is to build reliable reservoir models to be used by reservoir managers in 
order to make decisions. The uniqueness and complexity of each hydrocarbon reservoir make the 
accomplishment of this objective quite challenging. For the purposes of this book, we define the 
problem as follows:

Building full-field models that have practical utility for managing complex reservoirs. In order 
to fit this mold, the full-field reservoir model must be accurate and have a small computational 
footprint.

Complementary stipulations for such a model include incorporation of all available information 
about the reservoir, including detailed information about all wells. The two attributes that are empha-
sized in the above definition are accuracy and small computational footprint. The model has to be 

1Each century can be counted as four to five generations. 
2Actual oil production for commercial use goes back to the mid-1820s in Imperial Russia.
3Darcy’s law goes back to 1856, and Arp’s decline curves were introduced in 1945.
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accurate so that it can honor the past (history matched) before any comments can be made regarding 
its predictive capabilities. Furthermore, to be considered a viable reservoir management tool, the 
model’s computational footprint should be small enough to warrant sensitivity analyses, quantifica-
tion of uncertainties, and exploration of large solution spaces for field development planning.

The importance of accuracy of a full-field reservoir model should be obvious. Nevertheless, it 
must be emphasized that by history matching the past performance of the reservoir, which is usually 
preserved in the form of production history, one develops confidence in the utility of the model for 
further analyses. As the number of dynamic measurements in the field increases, so too does the 
complexity of the history-matching process. For example, when flowing bottomhole pressure or 
production rates are the only measured dynamic properties that are to be history matched (usually 
one of the two is used as the constraint, while the other one is calculated), the reservoir modeler has 
a much easier task to accomplish (and a better chance of success) as compared to the cases where 
other dynamic data such as Gas Oil Ratio (GOR), Water Cut (WC), time-lapsed saturation and  
static reservoir pressure (as a function of time) have been measured (and are present) in the history 
and need to be simultaneously history matched.4

The importance of the computational footprint cannot be overemphasized. It strikes at the heart 
of the problem: the model utility. This is a practical issue. No matter how accurate a full-field 
reservoir model is, a large computational footprint can make it useless in practice.5 Reducing the 
computational footprint of numerical models is the main reason companies have moved toward 
supercomputers and clusters of parallel central processing units. The never-ending race between 
larger models (high resolution in space and time) and faster computers continues to preoccupy many 
of our colleagues in the larger companies.

Tasks such as sensitivity analysis and quantification of uncertainties associated with the geologi-
cal (static) model (the backbone of any reservoir model) are complex and time-consuming under-
takings. As the run time (time for execution after the development is completed) of a model starts 
increasing to more than a few hours, performing such analyses becomes impractical. The solution 
is either to cut corners or to come up with tricks to perform fewer runs and make the most out of 
the results. This last exercise (reducing the number of runs) starts introducing limitations in the 
analyses. We pay a price by reducing the number of runs. Sometimes unjustifiable assumptions of 
linearity must be made in order to make certain approaches work. There is very little we can do. It 
is simply a conundrum that we cannot simplify our way out of. As long as we live by the laws of the 
current paradigm,6 there is only so much that we can do.

Equally complex and puzzling are field development and planning problems. As the number of 
wells (both producers and injectors) and the type of constraints increase, so too does the solution 
space that needs to be searched for optimal (or near-optimal) solutions. Solution space in this con-
text is defined as the number of possible combinations of wells and their associated constraints that 
can form a solution (combinatorial explosion). Any optimization routine, no matter how smart it 
may be, requires examining a large number of solutions in order to find the optimal or the near-
optimal solutions. Each solution in the case of a development plan means at least a single run of 
the reservoir model. It is easy to see that as the execution time (computational footprint) of a reser-
voir model increases, its utility as an objective function for planning is compromised. Again, many 

4Needless to say, just because a model can history match the past does not mean that its predictive capabilities are guar-
anteed. Those familiar with the history-matching process are well aware that history matching is an art as much as a science. 
Unfortunately, performing unreasonable tuning and modification of parameters to reach a history match is not an uncommon 
practice in our industry. A history-matched model is a nonunique model, by definition.

5Especially in the eyes of reservoir managers, who most of the time are the primary users of reservoir simulation models 
as a tool.

6The current paradigm, known as the computational paradigm, states that building models includes development of 
governing equations using first-principles physics and then using discrete mathematics to numerically solve the governing 
equations.
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reservoir engineers continue their quest to build proxy models that are simplified versions of the 
more-complex models, so that they can be used for such purposes, but there is always a price to pay. 
Sometimes the price we end up paying is so severe that it undermines the original efforts of building 
such complex and detailed numerical reservoir models from the very start.

Are there solutions for problems such as those mentioned above? Yes and no. For as long as we 
are sticking to the traditional paradigm of building reservoir models, there are no solutions. Here, 
by the traditional paradigm, we are referring to the well-known sequence of building the geologi-
cal (static) model and then using the principles of fluid flow in porous media to develop a dynamic 
model based on the numerical solutions of the partial-differential equation that governs fluid flow in 
porous media, the so-called numerical reservoir simulation and modeling, and finally modifying the 
static model in order to history match the dynamic model.

As long as we adhere to these core principles, we are simply pushing the envelope. There are, and 
continue to be, successes and failures. Incremental gains are made here and there. But if we want to 
remove this serious practical shortcoming altogether, we need to move beyond the traditional para-
digm of building reservoir models. The solution requires a paradigm shift. This paradigm shift and 
its manifestation in reservoir modeling are the subjects of this book.

This is not a general book that discusses the virtues and capabilities of data-driven analytics and 
indicates areas of the upstream oil and gas industry that can benefit from machine learning and 
data mining. This book is very specific. It has identified one specific area in our industry, namely 
reservoir modeling, and provides ample details on how this new and exciting technology (artificial 
intelligence and data mining) can be used to build new reservoir models. From that point of view, 
it is the only book of its kind in the oil and gas industry that provides step-by-step details in how 
to build a data-driven reservoir model, also known as a Top-Down Model (TDM). The following  
section is a summary of what can be expected in this book. 

1.2 What Is Top-Down Modeling?
To efficiently develop and operate a petroleum reservoir, it is important to have a model. Cur-
rently, numerical reservoir simulation is the accepted and widely used technology for this purpose. 
Data-driven reservoir modeling (also known as top-down modeling or TDM7) is an alternative (or a 
complement) to numerical reservoir simulation. TDM uses a Big Data solution (machine learning 
and pattern recognition) to develop (train, calibrate, and validate) full-field reservoir models based 
on field measurements (facts) rather than mathematical formulations of our current understanding 
of the physics of the fluid flow through porous media.

Unlike other empirical technologies, which only use production data as a tool to forecast 
production,8 or only use production/injection data for its analysis,9 TDM integrates all available field 
measurements in order to forecast production from every single well in a field with multiple wells. 
The field measurements that are used by TDM to build a full-field reservoir model include well 
locations and trajectories, completions and stimulations, well logs, core data, well tests, seismic, 
and production/injection history (including wellhead pressure and choke setting). TDM combines 
all the information from the sources mentioned above into a cohesive, comprehensive, full-field 
reservoir model using artificial intelligence technologies. A top-down model is defined as a full-field 
model within which production [including gas/oil ratio (GOR) and water cut (WC)]  is conditioned 
to all the measured reservoir characteristics and operational constraints. TDM matches the historical 
production (and is validated through blind history matching) and is capable of forecasting a field’s 
future behavior on a well-by-well basis. Imagine a decline curve analysis technique that covers the 
entire field, well by well, and incorporates reservoir characteristics and operational constraints and 

7Throughout this book “data-driven reservoir modeling” and “top-down modeling” are used interchangeably.
8Decline curve analysis
9Capacitance/resistance model
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accounts for interaction between wells whether they are only producers or a combination of produc-
ers and injectors. TDM is such a tool.

The novelty of data-driven reservoir modeling stems from the fact that it is a complete departure 
from traditional approaches to reservoir modeling. Fact-based, data-driven reservoir modeling man-
ifests a paradigm shift in how reservoir engineers and geoscientists model fluid flow through porous 
media. In this new paradigm, current understanding of physics and geology in a given reservoir 
is replaced by facts (data/field measurements) as the foundation of the model. This characteristic 
of TDM makes it a viable modeling technology for unconventional (shale) assets where the phys-
ics of the hydrocarbon production (in the presence of massive hydraulic fractures) is not yet well 
understood.

1.2.1 Role of Physics and Geology. Although it does not start from the first principles of physics, 
a top-down model is very much a physics-based reservoir mode. The incorporation of physics in 
TDM is quite non-traditional. Reservoir characteristics and geological aspects are incorporated in 
the model insofar as they are measured. Although interpretations are intentionally left out during 
the model development, reservoir engineering knowledge plays a vital role in the construction 
of the top-down model. Furthermore, expert knowledge and interpretation are extensively used 
during the analysis of model results. Although fluid flow through porous media is not explicitly 
(mathematically) formulated during the development of data-driven reservoir models, successful 
development of such models requires a solid understanding and experience in reservoir engineer-
ing and geosciences. Physics and geology are the foundation and the framework for the assimi-
lation of the data set that is used to develop the top-down model. The diffusivity equation has 
inspired the invention of this technology and was the blueprint upon which TDM was developed. 

1.2.2 Formulation and Computational Footprint. The top-down model is built by correlating10 
flow rate at each well and at each timestep11 to a set of measured static and dynamic variables. The 
static variables include reservoir characteristics such as well logs (e.g., gamma ray, sonic, density, 
resistivity), porosity, formation tops and thickness, and others at the following locations: 

1. At and around each well 
2. The average from the drainage area of each well 
3. The average from the drainage area of the offset producers 
4. The average from the drainage area of the offset injectors

The dynamic variables include operational constraints and production/injection characteristics at 
the appropriate timestep when production is being calculated (estimated), such as

1. Wellhead or bottomhole pressure, or choke size, at timestep t 
2. Completion modification (e.g., operation of inflow-control valve, squeeze off) at timestep t 
3. Number of days of production at timestep t 
4. GOR, WC, and oil production volume at timestep t–1
5. Water and/or gas injection at timestep t
6. Well stimulation details 
7. Production characteristics of the offset producers at timestep t–1

10Correlation that is conditioned to causation will be discussed in more detail in subsequent sections of this book.
11The length of timesteps in TDM is a function of the production characteristics and the age of the reservoir as well as the 

availability of data. It is usually either daily, monthly, or annual.
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The data (enumerated above) that are incorporated into the top-down model show its differences 
from other empirically formulated models. Once the development of the top-down model is com-
pleted, its deployment in forecast mode is computationally efficient. A single run of the top-down 
model is usually measured in seconds or in some cases in minutes. Size of a top-down model is 
determined by the number of producer and injector wells. The small computational footprint makes 
TDM an ideal tool for reservoir management, uncertainty quantification, and field development 
planning. Development and deployment costs of TDM are a small fraction of that for numerical 
reservoir simulation.

1.2.3 Expected Outcome of a Top-Down Model. Data-driven reservoir modeling can accurately 
model a mature hydrocarbon field and successfully forecast its future production behavior under a 
large variety of operational scenarios. Outcomes of TDM are forecast for oil production, GOR, and 
WC of existing wells as well as field development planning and infill drilling. When TDM is used 
to identify the communication between wells, it generates a map of reservoir conductivity that is 
defined as a composite variable that includes multiple geologic features and rock characteristics 
contributing to fluid flow in the reservoir. This is accomplished by deconvolving the impact of 
operational issues from reservoir characteristics on production.

1.2.4 Limitations of TDM. Data-driven reservoir modeling is applicable only to fields with a cer-
tain amount of production history; for this reason, TDM is not applicable to greenfields and fields 
with a small number of wells and short production history. Another limitation of TDM is that it is 
not valid once the physics of the fluid flow in a field goes through a complete and dramatic change. 
For example, once a top-down model is developed for a field under primary recovery, it cannot be 
applied to enhanced- recovery phases of the same field.

1.2.5 Software Tool for the Development of TDM. Top-Down Modeling was pioneered by 
Intelligent Solutions Incorporated (ISI). ISI has recently released a software product for the 
development and deployment of Top-Down Model, called IMagine™. At the time of publication 
of this book, no other company has announced a similar product for the development of top-
down models.

1.3 Paradigm Shift
Paradigm shift, a term first coined by Thomas Kuhn (1996), constitutes a change in basic assump-
tions within the ruling theory of science. According to Kuhn, “A paradigm is what members of 
a scientific community, and they alone, share” (Kuhn 1977). Jim Gray, the American computer 
scientist who received the Turing Award for his seminal contribution to computer science, once 
said, “Originally, there was just experimental science, and then there was theoretical science, 
with Kepler’s Law, Newton’s Law of Motion, Maxwell’s Equations, and so on. Then for many 
problems, the theoretical models grew too complicated to solve analytically, and people had to 
start simulating. These simulations have carried us through much of the last half of the last mil-
lennium. At this point, these simulations are generating a whole lot of data, along with a huge 
increase in data from the experimental sciences. People now do not actually look through tele-
scopes. Instead, they are ‘looking’ through large scale, complex instruments which relay data to 
datacenters, and only then look at the information on their computers.… The new model is for 
data to be captured by instruments or generated by simulations before being processed by soft-
ware and for the resulting information or knowledge to be stored in computers.… The techniques 
and technologies for such data-intensive science are so different that it is worth distinguishing 
data intensive science from computational science as a new, fourth paradigm for scientific explo-
ration” (Bell et al. 2009).
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So how does this paradigm shift constitute itself in the exploration and production industry? Do 
we collect and/or generate (either from our simulators or from instruments) enough data to benefit 
from such a paradigm shift? In this book, we examine the reservoir-modeling discipline in the explo-
ration and production industry in order to address these questions. 

What is the current paradigm of building models that attempts to explore and explain fluid flow in 
porous media? We use analytical as well as numerical approaches both at the well level and at the 
reservoir level. This is the current paradigm. In our attempts at analytical solutions, where well test-
ing is a good example, we approximate the problem in order to come to an exact analytical solution. 
Assumptions such as reservoir homogeneity, well-defined reservoir boundaries, and single-phase 
flow are among the basic assumptions that are required in order for the analytical solutions to be 
applicable. On the other hand, when we try to define the problem more realistically, by incorporat-
ing reservoir heterogeneity, irregular reservoir boundaries, multiple wells, and multiphase flow, then 
we are forced to discretize the problem in time and space and generate a large number of linear 
equations that can be solved numerically. Then, we use numerical solutions to solve the system of 
linear equations that was generated. Numerical solutions to the partial-differential equations are 
only approximate solutions. In other words, in attempts to minimize assumptions in the problem, 
we approximate the solutions. This paradigm has served our industry for decades and has resulted 
in many scientific and practical advances. We are not advocating that this be shelved. Data-driven 
reservoir modeling provides an alternative to (and in many cases a complement to) the traditional 
analytical and numerical approaches to modeling fluid flow in porous media. It is the paradigm shift 
as it is applied to reservoir modeling and reservoir management. 

When it comes to reservoir modeling, we generate or collect massive amounts of data throughout 
the life of a hydrocarbon-producing field. Data-driven reservoir modeling proposes the use of this 
massive amount of data that is collected in the form of drilling characteristics, well construction 
and trajectories, well logs of all different natures, core data, well tests, seismic surveys, and finally 
production and injection histories along with pressure measurements, in order to build a reservoir 
model that is entirely based on these field measurements and minimizes the incorporation of our 
interpretations and biases into the resulting model. Let us examine examples where large amounts 
of data are collected during oil and gas exploration and production.

1.3.1 Drilling Operation. The modern drilling operation generates hundreds of gigabytes of data 
on a daily basis. Measurement while drilling (MWD) and logging while drilling (LWD), which have 
been around for years, generate considerable amounts of data in real time while the drilling operation 
is ongoing. Complementing these data with seismic surveys and geological models that are developed 
for a given field includes incredible amounts of information about the field that can help increase drill-
ing efficiencies and eventually move the industry toward completely autonomous drilling operation.

1.3.2 Mature Fields. Mature fields around the world are sources of vast amounts of data and informa-
tion that have been collected over decades. Mature fields usually include a large number of wells that 
have been drilled throughout its history. The fact that the wells have been drilled at different time periods 
provides valuable insight into the fluid flow as well as pressure and saturation distribution throughout the 
field. This includes large amounts of historical production and injection data usually with the associated 
wellhead pressure or choke settings. Most of the wells, if not all of them, have the basic set of well logs. 
Several wells will have been cored, and therefore some core analyses are also available. Usually, well 
tests are available, and sometimes seismic surveys have been performed (sometimes more than once). 

In many cases, the size of the mature field determines the amount of data that can be expected to 
be available. More-prolific fields usually are blessed with larger amounts of data and more- diverse 
types of data. The amount and the variety of the data available on some prolific mature fields can be 
staggering. So much so, that it overwhelms reservoir engineers and reservoir managers. Many times 
in such cases large amounts of data will go unused and unanalyzed.
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1.3.3 Smart Completions, Smart Wells, and Smart Fields. Smart fields have two major char-
acteristics. First, they include smart completions with controls and measurements taking place at 
different locations along the completion, and, second, installation of permanent downhole gauges 
provides high-resolution data streams. Even haphazardly designed smart fields have generated mas-
sive amounts of data that hardly ever are looked at, even offline.

Smart completions let engineers intervene with details of wells’ operations from a distance. Smart 
wells transmit nearly continuous (real-time) data streams (e.g., pressure, flow rate) to the remote 
office providing immediate feedback on the consequences of recently made decisions and actions 
taken. Smart fields include multiple smart wells providing the possibility of managing the entire 
reservoir remotely and in real time. Smart fields generate terabytes12 and petabytes13 of data that are 
good examples of Big Data in the upstream oil and gas industry. 

1.3.4 Production From Shale Assets. We have been witnessing an incredible increase in hydro-
carbon production from source rocks, such as shale, in recent years. Production from shale has 
been made possible by drilling long lateral wells and then stimulating them using massive, multiple 
stages of hydraulic fractures. During this process, operators are now collecting large amounts of 
data that include well-construction data, reservoir characteristics in the form of well logs, comple-
tion data including much detail about each cluster of hydraulic-fracturing procedures, and finally 
detailed production data. This is a massive amount of data, especially when we consider that the well 
count in shale assets is in the hundreds.

Furthermore, the introduction of distributed temperature sensing and distributed acoustic sensing 
systems is adding a whole new dimension to the important data that can be collected during oil and 
gas production in shale wells. Once the distributed temperature sensing and distributed acoustic 
sensing data can be coupled with microseismic and other reservoir and production-related data that 
have been collected from the shale wells, engineers and geoscientists will have a realistic shot at 
understanding all the complexities that are associated with hydrocarbon production from shale in 
the presence of coupled induced and natural fractures. There should be no doubt in anyone’s mind 
that the only technology that has a realistic shot at making all this possible is advanced data-driven 
analytics, also known as “Shale Analytics.”14

1.3.5 Reservoir Simulation Models. It is a well-known fact that reservoir simulation models gen-
erate massive amounts of data. Actually the amount of data that is generated by reservoir simula-
tion models is so large that in order just to look at them for analysis, special visualization tools 
are required. Imagine that a large reservoir of tens or even hundreds of square miles that includes 
multiple distinct geological layers is being modeled. Furthermore, imagine that a large number of 
wells has been modeled in this reservoir. Having reservoir simulation models with tens and or even 
hundreds of millions of gridblocks is becoming standard in today’s oil and gas industry.

Now imagine generating oil, gas, and water production from the wells. Such a model generates 
gigabytes or terabytes of data for each of its timesteps, which include not only the static characteris-
tics of the reservoir that has been modeled but also the resulting pressure and saturation distributions 
throughout the time and space for each gridblock. If the simulation is compositional, the amount of 
generated data increases exponentially.

12A terabyte of data is 1012 bytes of data.
13A petabyte of data is 1015 bytes of data.
14A book by this name (Shale Analytics) has recently been published by Springer-Verlag.


