Crude Oil Waxes, Emulsions, and Asphaltenes

J. R. Becker
Contents

Section I Emulsions

<table>
<thead>
<tr>
<th>Introduction</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Petroleum Companies and Emulsions</td>
<td>5</td>
</tr>
<tr>
<td>Oil and Water</td>
<td>5</td>
</tr>
<tr>
<td>Emulsions</td>
<td>6</td>
</tr>
<tr>
<td>Production Environments</td>
<td>6</td>
</tr>
<tr>
<td>Specialty Chemicals and the Environment</td>
<td>8</td>
</tr>
<tr>
<td>Oil-in-Water Emulsions and Environmental Concerns</td>
<td>8</td>
</tr>
<tr>
<td>Water-in-Oil Emulsions and Environmental Concerns</td>
<td>9</td>
</tr>
<tr>
<td>Field Application of Emulsion Breakers</td>
<td>9</td>
</tr>
<tr>
<td>Specialized Equipment</td>
<td>10</td>
</tr>
<tr>
<td>The Cost of Wet Oil</td>
<td>12</td>
</tr>
<tr>
<td>The Cost of Oily Water</td>
<td>14</td>
</tr>
<tr>
<td>Transport and Refining</td>
<td>14</td>
</tr>
<tr>
<td>Refinery Influent Streams</td>
<td>15</td>
</tr>
<tr>
<td>Emulsion Formation</td>
<td>16</td>
</tr>
<tr>
<td>Emulsion Formation Criteria</td>
<td>16</td>
</tr>
<tr>
<td>Solubility</td>
<td>16</td>
</tr>
<tr>
<td>Intermediary Agents</td>
<td>18</td>
</tr>
<tr>
<td>External and Internal Phase</td>
<td>21</td>
</tr>
<tr>
<td>Summary</td>
<td>26</td>
</tr>
</tbody>
</table>

2 Forces Involved in Emulsions | 31 |

Chemical Complexities of Crude Oil Emulsions	31
Nonpolar Interactions	33
Combined Ionic and Inductive Forces	37
Aggregate Interactions	37
Bipolar Partitioning	41
Internal Phase Diffusion	41
Aggregate Number	43
Emulsion Collision Frequency	44
Emulsion Collision Energy	46
Gravitational Settling Forces	46
Summary	47
Contents

3 Macroscopic Physical Behavior of Emulsions 49
 Viscosity ... 49
 Emulsion Behavior under Shear Stress 51
 Temperature Effects on Emulsions 53
 Gravitational Effects on Emulsions 55
 Electromagnetic Field Effects on Emulsions 56
 Determination of Emulsion Type 60
 Quantifying Phases 60
 Quantifying Phases: Oil-in-Water Emulsions 60
 Product Screening Methods 62
 Oil in Water Emulsion Screening 64
 Special Test Procedures 64
 Field Blending Practices 66
 Summary .. 69

4 Oil Emulsion Breakers .. 67
 Water in Oil ... 67
 Nonionic Surfactants 69
 Nucleophiles .. 77
 Summary .. 80

5 Water Emulsion Breakers 83
 Oil in Water ... 83
 Organic Polysalt Emulsion Breakers 84
 Idealized Organic Polysalts 84
 Flocculation versus Emulsion Resolution 87
 Water in Oil Emulsion Breakers 87
 Oil in Water Emulsion Breakers 96
 Polyamine and Quaternium Salts 96
 Summary .. 98

Section II Waxes 101

6 Petroleum Companies and Waxes 103
 Paraffin Wax in Crude Oil 103
 Paraffin Wax Production Problems 104
 Organic Deposition Control 105
 Removal of Paraffin Wax Deposits 105
 Wax and Work-Over .. 106
 Physical and Mechanical Wax Control 106
 Wax and Crude Oil Transport 107
 Waxy Crude Oils and the Refinery 108
 Treatment Problems 108
Wax and Emulsions .. 109
Solids and Waxes .. 109
Waxes and Asphaltenes .. 112
Some Wax Treatment Considerations 112
Testing Methodologies .. 113
Summary ... 122

7 Chemical Surfaces ... 125
Wax Surfaces ... 125
Surface Hierarchy .. 126
Wax Defined .. 126
Wax and Viscosity .. 129
The Purity Gradient ... 131
Wax and Changing Surfaces 134
Surface Tension and Wax 134
Wax Crystals .. 138
Crystal Order .. 138
Crystal Order and Surface Tension 140
Summary ... 142

8 Wax Crystal Order and Temperature 145
The Odd Relationship of Time and Temperature 145
Wax Crystal Habits ... 147
London Forces and van der Waals Radii 147
Molecular Crystals ... 147
Ternary and Higher Eutectics 150
Introduction to a Kinetic Model 154
Crystal Modifiers ... 156
A Return to a Kinetic Model 157
Gas Chromatographic Composition Profiles
 Versus Kinetic Model ... 159
Summary ... 161

9 Wax Physical Properties 165
Melting Point and Boiling Point of Alkanes 165
Bulk System Properties ... 167
Molecular Contributions to Bulk System Rheology 167
Quantum Considerations of Viscosity 171
Intrinsic Viscosity ... 175
Pseudoplasticity and Thixotropy 176
Yield Value .. 176
Analogous Thermometry and Rheology 180
Sound As a Means of Measuring Aggregate Behavior 180
Summary ... 183
Contents

10 Wax and Quantum Effects .. 185
 Electromagnetic Effects of Aggregation 185
 Waxes and Piezoelectricity 189
 Practical Applications of Electromagnetic
 Aggregation Effects 193
 Molecular Collisions 194
 Taking Advantage of Crystallization 196
 How Crystal Modifiers Work 196
 Changes in Crystal Morphology 200
 Crystal Modifier Products 200
 Crystal Modifier Applications 202
 Crystal Modifier Synthetic Limitations 202
 Some Wax Control Methods 203
 Remedial Treatment Methods 203
 Mechanical Methods 205
 Biotechnology ... 205
 Supplemental Methods of Wax Control 206
 Summary .. 206

Section III Asphaltenes .. 209

11 Asphaltenes and Crude Oil 211
 Asphaltenes Deposits 211
 Coplaner Orbital Overlap or Pi Bonding 213
 Polymeric Forms Derived from Protoporphyrin 213
 Solvation Sheaths 215
 Electrostatic Behavior of Asphaltenes 219
 Asphaltenes Destabiliztion 219
 Unsheathed Asphaltenes Cores 220
 Metallocenes ... 220
 Magnetic Susceptibility and Streaming Potential 222
 External Aggregate Asphaltenes Destabiliztion 222
 Summary .. 224

12 Bulk Behavior of Asphaltenes 229
 Operational Definitions Versus Chemical Composition 229
 Indirect Evidence for Asphaltenes Composition 230
 Field Problems with Asphaltenes 230
 Acid Effects on Asphaltenes 232
 Artificial Causes of Asphaltenes Deposition 233
 Oil Field Treatment Methods 233
Contents

Production Factors Affecting Asphaltene Deposition 234
Asphaltene Deposition Control by Treatment
 of Other Problems .. 235
Fluid Transport Equipment .. 235
Summary ... 236

13 Asphaltene Testing Methods 237
 Solvent Testing .. 237
 Core Testing Procedures ... 238
 Thin-Layer Photometry ... 238
 Size Exclusion Gel Permeation Chromatography 240
 Proposed Microwave Tests 240
 Proposed Ligand Replacement Method 242
 Designing Asphaltene Deposit Control Chemicals 242
 Chemical Handles .. 244
 Chemical Treatment Versus Reaction 246
 Radical Reactions with Sulfur 248
 Combination Product for Treatment of Asphaltenes 248
 Summary ... 250

14 Physical Properties of Treating Chemicals 251
 Some Physical and Chemical Testing 251
 Chemical Tests ... 252
 Physical Testing .. 254
 Specialized Testing Procedures 255
 Summary ... 255

Appendix A .. 257

Appendix B .. 259

Appendix C .. 261

Index ... 267
Emulsions are among the many problems encountered in the production, transport, and refining of crude oil. Dealing with these complex structural arrangements accounts for much of the expense incurred by oil companies in their daily operations. The presence of water in oil (and oil in water) costs the producer, transporter, and refiner in several ways. When water is present in produced oil several other costly byproducts of its presence result.

Corrosion, scale, and dissolved metals are three important byproducts of the presence of emulsions in produced crude oil. Each of these individual problems must be addressed by the producers prior to the transport and refining of the crude. With increasing environmental regulations, the requirements for safe disposal of the produced water derived from the resolution of these emulsions are also increased. Thus, the cost of resolving these problems escalates, and the need for understanding their nature becomes critical to the operations of an oil company.

The information presented here is not intended to be an exhaustive discussion of the subject of emulsions, but rather a discussion directed to the particular aspects of these systems that relate to the oil industry. There is a fair amount of chemistry, physics, and mathematics involved in this subject, but efforts have been made to minimize the use of rigorous treatments of these areas. Throughout this book the approach is to develop an intuitive discussion that has practical meaning to those faced with the resolution of these problems.
Emulsion Formation

Crude oil is usually, but not always, associated with water. During the process of its retrieval from the production zone, the produced fluid undergoes a significant amount of agitation. It is this agitation combined with heat, pressure, and chemicals present in the crude that act to produce emulsions. The type of chemicals present in the crude oil are many and varied, and range from pure hydrocarbon \((C_nH_{2n+2})\) to complex hetero-atomic polycyclics. These also present a range of solubility from water-soluble to oil-soluble, and it is this range of solubilities that is responsible for the formation of emulsions. When a producing well is brought into production, the quantity of water present in the oil is determined by the content of coincident water and oil present in the formation.

Much of the crude oil produced is derived from sandstone formations. These formations consist of combinations of silicon and oxygen that tend to form as partially-charged, anionic (negatively charged) crystallites. These crystallites have a high affinity for water and are often found in close association. This close association is due to the phenomenon of hydrogen bonding, where the partially positive hydrogen of water interacts with the partially negative oxygen of the silicate \((Si_nO_{2n})\). This interaction and association results in a layer of water surrounding the crystallites, which is termed connate water.

The connate water layer tends to remain closely associated with the silicate surface, and maintains an equilibrium with the free water contained in the crude oil (see Fig. 1–4). Over time this association is established as a static condition, since no external force has acted as an agent to change this preferred state. When the reservoir is tapped, this equilibrium state is disturbed, and the pressure drives the fluid from the pore channels within the sandstone formation. The resulting increase in shearing forces combines with the equilibrium shift of free-water partial pressure in the oil phase, and emulsions begin forming.

Emulsion Formation Criteria

The criteria for the formation of emulsions can be divided into categories:

- Differences in solubility between the continuous phase and the emulsified phase must exist
- Intermediate agents having partial solubility in each of the phases must be present
- Energy sources of the appropriate magnitude to mix the phases must be available

Solubility

The first criterium requires that the phases undergoing emulsification consist of molecules that exhibit wide separations in chemical composition,
Fig. 1-9 Water-in-oil emulsion
interactions, single and multiple bipolar layering, hydrogen bonding, solvent sheathing, metal coordinate complexes, and charge sign at the interface. Additional complications arise when the physical states and interactions of the macro-aggregates are considered. Some of these interactions include partitioning of the bipolar phases, diffusion of polar phase between aggregates, aggregate number, aggregate collision frequency, collision energy, gravitational settling, and surface tension.

Bipolar Partitioning

The bipolar emulsifiers present in a biphased system will partition into collections of like species or molecular structure. This occurs because various molecules exhibit different behaviors under different conditions of temperature and pressure. Two of the bipolar molecules mentioned earlier (naphthoic and stearic acids) provide good examples of these different behaviors. The melting points of stearic and naphthoic acids are 71.5° C and 185.5° C, respectively. Both of these acids are found in crude oil, and therefore represent good candidates for discussion. Although the hydrogen bonding capabilities of naphthoic acid are limited, aromatic ring interactions of the unpaired electrons plus the carboxyl group interactions combine to produce its high boiling point. Solvation by the nonpolar phase is therefore less successful than it is in the case of stearic acid.

Additionally, the interactions of the carboxyl and aromatic substituents provide a much more stable aggregate than the stearic acid’s inductive alkyl and carboxyl interactions. Thus, the naphthoic and stearic acids will tend to aggregate in groups of like molecules. These aggregate groupings will collect at the interface between the nonpolar and polar phases and remain grouped at the interface (see Fig. 2–7). This explains why the emulsions formed in a mixed system tend to exhibit a partitioning of bipolar emulsifying agents.

Thesepartitioned groupings, however, do not necessarily produce smaller, stronger emulsions simply because of their intermolecular attraction forces. The strength of the intermolecular attractions must be overcome, to some degree, when the ordered emulsifier layer is formed. Thus, the geometries of the groupings, or molecular positions, are altered in going from one orientation to another, and mixed-phase emulsifier systems tend to produce emulsions with sizes that reflect the various bipolar phases present in the system.

Internal Phase Diffusion

Emulsions can be thought of as containers for chemically dissimilar materials occupying space inside a continuous phase of opposite polarity. These containers are semipermeable and allow interchanges of similar and appropriately sized fractions. In this way a dynamic equilibrium is set up between containers (emulsion aggregates) that maintains a balanced concentration of internal phase solutions within similarly composed aggregates. Thus, an emulsion formed from a highly concentrated ionic water
Macroscopic Physical Behavior of Emulsions

Fig. 3–9 Basic refinery unit
Fig. 5-2 Some idealized oil in water emulsion breakers