Applied SEISMOLOGY

A Comprehensive Guide to Seismic Theory and Application

By Mamdouh R. Gadallah
and Ray L. Fisher
Contents

1 Overview and Summary ..
 Introduction ..
 Seismic Refraction Exploration Overview ...
 Seismic Reflection Exploration Overview ...

2 Geological Background ..
 Introduction ..
 Geologic Time Scale ..
 Internal Structure of the Earth ...
 Rocks in the Earth's Crust ...
 Deformation of Crustal Rocks ...
 The Nature of Petroleum ...
 Oil and Gas Accumulation ...
 Hydrocarbon Traps ...
 Workshop ..

3 Geophysical and Mathematical Background ..
 Basic Geophysical Theory ...
 Wave propagation ...
 Seismic amplitudes ..
 The seismic record ..
 Mathematical Theory and Concepts ...
 Sampled data ..
 Convolution and Correlation ...
 Time and Frequency Domains ...
 Phase and Its Effect on Waveforms ..
 Effect of Bandwidth ..
 The F-K Domain ...
 The Z-transform ..
 The Radon transform ..
 The Complex Trace ..
 Workshop ..

4 Seismic Refraction Exploration ...
 Introduction ..
 Refraction Methods ...

5 Seismic Reflection Data Acquisition ..
 Introduction ..
 Permitting ..
 Positioning ..
 Positioning Summary ..
 Signal Generation ..
 Recording ..
 Seismic Detectors ...
 Noise ...
 Recording Systems ..
 2-D Acquisition Parameters and Operations ...
 3-D Acquisition Parameters and Operations ...
 Workshop ..
6 Seismic Reflection Data Processing

Introduction .. 6
Data Initialization .. 6
Preliminary Signal Processing .. 6
Noise Suppression .. 6
Velocity Analysis ... 6
Brute Stack .. 6
Deconvolution .. 6
Surface-consistent Scaling .. 6
Time-variant Spectral Whitening (TVSW) .. 6
Model-based Wavelet Processing (MBWP) .. 6
Inverse-Q Filtering ... 6
Residual Statics .. 6
Pre-stack Multiple Attenuation .. 6
CMP Stack .. 6
Post-stack Multiple Attenuation .. 6
Migration .. 6
- Band-pass filtering ... 6
Time-to-Depth Conversion .. 6
Display .. 6
Seismic Data Processing Summary .. 6
Workshop ... 6

7 Seismic Reflection Data Interpretation .. 6

Introduction ... 7
Modeling .. 7
Seismic Inversion and Wavelet Processing .. 7
Seismic Stratigraphy .. 7
Modern Techniques and Future Applications of Sequence Stratigraphy .. 7
- High resolution seismic data acquisition .. 7
Vertical Seismic Profiling (VSP) .. 7
- Amplitude versus offset (AVO) .. 7
- Shear waves and seismic stratigraphy .. 7
4-D Seismic Technology ... 7

Appendix A: Refraction Calculations .. 7

Single Horizontal Layer, V1 > V0... 7
Two Horizontal Layers, V2 > V1 > V0... 7
N Horizontal Layers, V0 < V1< V2< . . . < VN.. 7
Single Dipping Layer, V1 > V0 ... 7
Two Dipping Layers, V2 > V1 > V0 .. 7

Appendix B: SEG Tape Formats .. 7

Introduction ... 7
Comments and Notes .. 7
Standard Tape Formats ... 7

Appendix C: Workshop Answers .. 7

Geological Background Workshop Answers .. 7
Geophysical and Mathematical Background Workshop Answers .. 7
Seismic Refraction Exploration Workshop Answers .. 7
Seismic Reflection Data Acquisition Workshop Answers ... 7
Seismic Reflection Data Processing Workshop Answers .. 7

Bibliography ... 7
List of Figures

1-1 Seismic Waves from Big Bertha's Firing
1-2 Dip Shooting
1-3 Typical 2-D Seismic Geometry
1-4 Continuous or Single-fold Subsurface Coverage
1-5 CMP Shooting
1-6 Multi-fold Shooting
1-7 Meandering Stream Channel
1-8 3-D Prospect Layout

2-1 A Fossil Sequence
2-2 Dating Rocks from Fossils
2-3 Internal Structure of the Earth
2-4 The Lithosphere
2-5 Mountains, Ridges, and Rises of the World
2-6 Seafloor Spreading
2-7 Mantle Convection Currents
2-8 Tectonic Plate Boundaries
2-9 Tectonic Plate Model
2-10 Pangea, The Universal Continent, About 200 Million Years Before the Present
2-11 The Continents in Their Present Positions and Their Projected Positions 50 Million Years from Now
2-12 Top Part of the Earth's Crust
2-13 Formation of Igneous Rocks
2-14 The Rock Cycle
2-15 Sorting
2-16 Prevalent Sedimentary Rock Types
2-17 The East Texas Oil Field
2-18 Strike and Dip
2-19 Strike, Dip, and Plunge
2-20 Stress-strain Relationship
2-21 Types of Stress
2-22 Folding of Rocks
2-23 Monoclines, Synclines, and Anticlines
2-24 Terms Describing Anticlines
2-25 Symmetric and Asymmetric Folds
2-26 Anticlinal Dome, Overhead View
2-27 Eroded Folds
2-28 An Eroded, Plunging Syncline in Northwest Africa and an Eroded, Plunging Anticline in the Zagros Mountains of Iran
2-29 Joints
2-30 Fault Motion
2-31 Dip Slip Faults
2-32 Well Bores through Normal and Reverse Faults
2-33 Fault Displacement along the Great Glen Fault
2-34 Horsts and Grabens
2-35 Rollover Anticline
2-36 The Fuel Cycle
2-37 Molecular Forms of Petroleum
2-38 Migration of Hydrocarbons
2-39 Components of Clastic Sedimentary Rocks
2-40 The Oil Window
2-41 Effect of Grain Size on Porosity and Permeability
2-42 Geothermal Gradient in Sedimentary Basins
2-43 Hydrostatic Pressure Gradient
2-44 Anticline Trap
2-45 Reservoir Spill Point
3–27 Aliasing
3–28 Measuring the Earth’s Impulse Response ...
3–29 Convolution
3–30 Crosscorrelation of \(y_p\) onto \(x_m\) ...
3–31 Crosscorrelation of \(x_m\) onto \(y_p\) ...
3–32 Autocorrelation of \(x_m\) ...
3–33 Single Frequency Sinusoids ...
3–34 Amplitude and Phase Spectra for Single Frequency Sinusoids
3–35 Signal Synthesis and Decomposition ...
3–36 Time and Frequency Domains ...
3–37 Effect of Time Reversal ...
3–38 Frequency Filter Types ...
3–39 Band-pass Filtering ...
3–40 Anti-alias Filters ...
3–41 Phase Definitions ...
3–42 Effect of Adding 90° to Phase Spectrum ...
3–43 Changes in Waveform with Successive Additions of 90° Phase
3–44 Effect of Adding Linear Phase-to-phase Spectrum ...
3–45 Linear Phase Slope and Time Shift ...
3–46 Phase and Wavelet Shape ...
3–47 Minimum-, Maximum-, and Mixed-phase Wavelets ...
3–48 Effect of Bandwidth ...
3–49 Bandwidth and Vertical Resolution ...
3–50 A Wedge or Pinch-out ...
3–51 Phase and Resolution ...
3–52 Horizontal Resolution and Fault Displacement ...
3–53 The Fresnel Zone ...
3–54 Spatial Sampling ...
3–55 A Seismic Record as a Two-dimensional Array ...
3–56 The F-K Plane ...
3–57 Noise Record in T-X and F-K Domains ...
3–58 Plane Wave Incident on Surface ...
3–59 Spatial Aliasing as a Function of Dip and Frequency ...
3–60 Linear Events in T-X and F-K ...
3–61 Linear Dipping Events ...
3–62 Effect of Group Interval on Spatial Aliasing ...
3–63 Separation of Signal and Noise in F-K ...
3–64 Definition of the Ray Parameter ...
3–65 The Radon Transform ...
3–66 Event Mapping between T-X and \(\tau-p\) Domains ...
3–67 CMP Record in T-X Domain and \(\tau-p\) Domain ...
3–68 Trace Interpolation with the Radon Transform ...
3–69 A Clock Pendulum and Its Energy Cycle ...
3–70 Complex Trace Analysis ...
3–71 Workshop ...
3–72 Workshop ...
3–73 Workshop ...
3–74 Workshop ...
3–75 Workshop ...
4–1 Layout for Intensive Refraction Shooting ...
4–2 T-X Plot for Inline Refraction Shooting ...
4–3 Simplified Earth Model Based on Data from Figure 4–2
4–4 Arc and Broadside Shooting ...
4–5 Workshop ...

List of Figures
5-1	Target Reference
5-2	Simple Example of Vertical Reference Datum
5-3	Geoid
5-4	Geodetic Latitude
5-5	Longitude Measurement
5-6	Horizontal Reference Datum
5-7	Geocentric and Non-geocentric Ellipsoids
5-8	Datum Transformation
5-9	Map Projection
5-10	Range-Range LOPs
5-11	GPS Receivers and Antenna
5-12	Antenna Motion
5-13	Source and Receiver Assumptions for 2-D Recording
5-14	Cable Feathering
5-15	Streamer Curvature
5-16	Source and Receiver Positioning, 1985–1991 and Current
5-17	Vessel Heading Terms
5-18	Bird/Compass on Test Rig
5-19	Traditional Applications—Cable Shaping
5-20	Acoustic Configuration Diagram
5-21	An Integrated Solution
5-22	Statistical Analysis
5-23	The Airgun Technique
5-24	Airgun Operation
5-25	The Bubble Effect
5-26	Airgun Pressure–Volume Relationship
5-27	Waveform Synthesis by Airgun Arrays
5-28	Measurement of the Far Field Signature
5-29	Time Domain Attributes
5-30	Airgun Frequency Domain Attributes
5-31	Airgun Array Signatures and Parameters
5-32	Signature Variation with Frequency and Depth
5-33	A Single Sleeve Gun, a Disassembled Sleeve Gun, a Sleeve Gun with a Mounting Harness, and a Family of Sleeve Guns
5-34	Side View of a Typical Sub-array Configuration
5-35	Plan View of a Typical Source Array
5-36	Streamer and Source Depth Ghost Notches
5-37	Ghost Response at 5 and 10 m
5-38	Source Array Effects
5-39	The Explosive Technique
5-40	Explosive Source Operation
5-41	Measuring the Far-field Signature of an Explosive Source
5-42	Effect of Charge Size
5-43	Charge Depth Test
5-44	Explosive Cord as a Seismic Energy Source
5-45	Truck-mounted Vibrator Components
5-46	Side View of a Truck-mounted Vibrator
5-47	Vibrator Operation
5-48	Effect of Spike on Vibrator Cross-correlations
5-49	Vibroseis Correlation
5-50	Klauder Wavelet and Resolution
5-51	Width
5-52	Resolution Versus Sweep Bandwidth
5-53	Frequency Versus Time for Various Sweep Types
5-54	Pilot Sweeps for $T^{0.3}$, Logarithmic, Linear, Exponential, and T^3
5-55	Vibroseis Correlation Ghosts
5-56	Vibroseis Correlation Ghost Examples
Table of Contents

5–114 Total Survey Area Required to Correctly Image Target
5–115 Bins or Cells
5–116 Bin Shapes
5–117 Subsurface Coverage in Marine Surveys
5–118 Static Binning
5–119 Overlapping or Wide Binning
5–120 Effect of Multiple Streamers and Multiple Sources on Data Acquisition
5–121 Conventional Straight Line or Racetrack Shooting
5–122 Circle Shooting
5–123 Approaches to Salt Dome Shooting
5–124 Azimuthal Variation in Conventional One-boat Operation and Two-boat Undershoot Operations
5–125 Obstacle Avoidance, One-boat Operation and Two-boat Undershoot
5–126 Obstacle Avoidance with Two Boats
5–127 Acquisition Template
5–128 Swath Layout Method, Swath Shooting Method
5–129 Shot Index
5–130 Offset and Azimuth Variation in a Bin
5–131 A Star Array and Its Polar Response
5–132 Straight Line Method
5–133 Another Type of Swath Shooting
5–134 The Brick Pattern
5–135 Odds and Evens
5–136 The Zig-zag and Double Zig-zag Patterns
5–137 The Non-Orthogonal Pattern
5–138 Bin Fractionation Method
5–139 The Button Patch Method
5–140 Recovery Shots with In-line Shift
5–141 Recovery Shots with Cross-line Shifts
5–142 Workshop
5–143 Workshop
5–144 Workshop
5–145 Workshop
5–146 Workshop

6–1 Vertical Stack
6–2 Straight Stack
6–3 Diversity Stack Time Gates
6–4 Average Power of Each Trace in Each Gate
6–5 Scalers for Each Gate
6–6 Diversity Stack Scaling Functions
6–7 Application of Diversity Scalers
6–8 Diversity Stack Output
6–9 Stack Comparison
6–10 Need for Scaler Normalization
6–11 Zero- and Minimum-phase Correlation
6–12 Uncorrelated and Correlated Vibroseis Shot Records
6–13 Typical Processing Sequence
6–14 Typical Processing Sequence (continued)
6–15 Typical Processing Sequence (continued)
6–16 LMO Traces Display
6–17 OBC Receiver Location
6–18 A Stacking Diagram
6–19 Trace Gathers
6–20 Shot and CMP Traces with Geologic Dip
6–21 Near-surface Model
6–22 Effect of Variable Near Surface
6–23 Static Corrections, Case I: Surface Source
6–24 Static Corrections, Case IIA: Source in Weathering
6–25 Static Corrections, Case IIA: Source in Subweathering

5–126 Obstacle Avoidance with Two Boats
5–127 Acquisition Template
5–128 Swath Layout Method, Swath Shooting Method
5–129 Shot Index
5–130 Offset and Azimuth Variation in a Bin
5–131 A Star Array and Its Polar Response
5–132 Straight Line Method
5–133 Another Type of Swath Shooting
5–134 The Brick Pattern
5–135 Odds and Evens
5–136 The Zig-zag and Double Zig-zag Patterns
5–137 The Non-Orthogonal Pattern
5–138 Bin Fractionation Method
5–139 The Button Patch Method
5–140 Recovery Shots with In-line Shift
5–141 Recovery Shots with Cross-line Shifts
5–142 Workshop
5–143 Workshop
5–144 Workshop
5–145 Workshop
5–146 Workshop

6–1 Vertical Stack
6–2 Straight Stack
6–3 Diversity Stack Time Gates
6–4 Average Power of Each Trace in Each Gate
6–5 Scalers for Each Gate
6–6 Diversity Stack Scaling Functions
6–7 Application of Diversity Scalers
6–8 Diversity Stack Output
6–9 Stack Comparison
6–10 Need for Scaler Normalization
6–11 Zero- and Minimum-phase Correlation
6–12 Uncorrelated and Correlated Vibroseis Shot Records
6–13 Typical Processing Sequence
6–14 Typical Processing Sequence (continued)
6–15 Typical Processing Sequence (continued)
6–16 LMO Traces Display
6–17 OBC Receiver Location
6–18 A Stacking Diagram
6–19 Trace Gathers
6–20 Shot and CMP Traces with Geologic Dip
6–21 Near-surface Model
6–22 Effect of Variable Near Surface
6–23 Static Corrections, Case I: Surface Source
6–24 Static Corrections, Case IIA: Source in Weathering
6–25 Static Corrections, Case IIA: Source in Subweathering
<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-26</td>
<td>First Breaks of Selected CMP Gathers</td>
</tr>
<tr>
<td>6-27</td>
<td>First Break Ray Paths and T-X Plot</td>
</tr>
<tr>
<td>6-28</td>
<td>Refraction Ray Path Segments</td>
</tr>
<tr>
<td>6-29</td>
<td>Redundancy of Data in Refraction Statics Determination</td>
</tr>
<tr>
<td>6-30</td>
<td>Refraction Elevation Model</td>
</tr>
<tr>
<td>6-31</td>
<td>Field Record with No Gain Applied</td>
</tr>
<tr>
<td>6-32</td>
<td>Spherical Divergence and Spherical Spreading</td>
</tr>
<tr>
<td>6-33</td>
<td>Geometric Spreading Correction Example</td>
</tr>
<tr>
<td>6-34</td>
<td>Programmed Gain Control</td>
</tr>
<tr>
<td>6-35</td>
<td>Ray Paths of OBC Ghosts</td>
</tr>
<tr>
<td>6-36</td>
<td>OBC Primary Plus Ghosts</td>
</tr>
<tr>
<td>6-37</td>
<td>Hydrophone Ghosting</td>
</tr>
<tr>
<td>6-38</td>
<td>Hydrophone Ghost Impulse Response</td>
</tr>
<tr>
<td>6-39</td>
<td>Geophone Ghosting</td>
</tr>
<tr>
<td>6-40</td>
<td>Geophone Ghost Impulse Response</td>
</tr>
<tr>
<td>6-41</td>
<td>A Plot of Scale Factor (1+R)/(1–R) for 360 Receiver Locations</td>
</tr>
<tr>
<td>6-42</td>
<td>Transformation from T-X to F-K Domain</td>
</tr>
<tr>
<td>6-43</td>
<td>Positive and Negative Cut Lines</td>
</tr>
<tr>
<td>6-44</td>
<td>Filtering in the F-K Plane</td>
</tr>
<tr>
<td>6-45</td>
<td>Transformation of Filtered Record from F-K to T-X Domain</td>
</tr>
<tr>
<td>6-46</td>
<td>Noise Record in the T-X Domain and the F-K Domain</td>
</tr>
<tr>
<td>6-47</td>
<td>Filtered Field Record in the F-K Domain and the T-X Domain</td>
</tr>
<tr>
<td>6-48</td>
<td>Linear Move Out Applied to Linear Noise</td>
</tr>
<tr>
<td>6-49</td>
<td>Field Record Dominated by Linear Noise</td>
</tr>
<tr>
<td>6-50</td>
<td>Record of 6-49 after Six Passes of Linear Noise Attenuation</td>
</tr>
<tr>
<td>6-51</td>
<td>Instantaneous and Interval Velocities</td>
</tr>
<tr>
<td>6-52</td>
<td>Reflection with Normal Move Out</td>
</tr>
<tr>
<td>6-53</td>
<td>The NMO Correction Process</td>
</tr>
<tr>
<td>6-54</td>
<td>The NMO Correction Process</td>
</tr>
<tr>
<td>6-55</td>
<td>Effect of Velocity on NMO Correction</td>
</tr>
<tr>
<td>6-56</td>
<td>NMO Stretch</td>
</tr>
<tr>
<td>6-57</td>
<td>Input CMP Records, Same Records after NMO Correction, and after NMO Mute</td>
</tr>
<tr>
<td>6-58</td>
<td>Picked Vs. Default Mutes</td>
</tr>
<tr>
<td>6-59</td>
<td>RMS Velocity as the Replacement Velocity in the Multi-layer Situation</td>
</tr>
<tr>
<td>6-60</td>
<td>NMO for Plane, Horizontal, and Iso-velocity Layers</td>
</tr>
<tr>
<td>6-61</td>
<td>Reflection from a Dipping Reflector</td>
</tr>
<tr>
<td>6-62</td>
<td>A Dipping Reflector in 3-D</td>
</tr>
<tr>
<td>6-63</td>
<td>Velocity Functions</td>
</tr>
<tr>
<td>6-64</td>
<td>Velocity Analysis Location Used for Example</td>
</tr>
<tr>
<td>6-65</td>
<td>The Velocity Sweep</td>
</tr>
<tr>
<td>6-66</td>
<td>Semblance Plot</td>
</tr>
<tr>
<td>6-67</td>
<td>Stack of CMPs Using the Nine Velocity Functions of Figure 6-68</td>
</tr>
<tr>
<td>6-68</td>
<td>CVS Display Used to Generate the Velocity Trend for the IVP Session</td>
</tr>
<tr>
<td>6-69</td>
<td>Semblance Plot Generated from the Input Velocity Fan</td>
</tr>
<tr>
<td>6-70</td>
<td>CMP 61 Corrected for NMO Using the Velocity Function Shown in White on the Semblance Plot</td>
</tr>
<tr>
<td>6-71</td>
<td>CMP 61 Corrected for NMO Using the Modified Velocity Function</td>
</tr>
<tr>
<td>6-72</td>
<td>CMP 61 Corrected for NMO Using the Modified Velocity Function</td>
</tr>
<tr>
<td>6-73</td>
<td>Observed Move Out versus NMO for a Flat Layered Earth</td>
</tr>
<tr>
<td>6-74</td>
<td>Best Fit Hyperbola to Observed Move Out, NMO-corrected Traces</td>
</tr>
<tr>
<td>6-75</td>
<td>Using Velocity Obtained from Best Fit Hyperbola</td>
</tr>
<tr>
<td>6-76</td>
<td>Effect of Restricting Offsets on Velocity Analysis</td>
</tr>
<tr>
<td>6-77</td>
<td>Earth Model with Near-Surface Anomaly</td>
</tr>
</tbody>
</table>
6–81 Synthetic Traces Based on Model of Figure 6–80
6–82 Variations in Stacking Velocity Caused by Near-Surface Anomaly
6–83 Stack of Synthetic Traces Based on Model of Figure 6–80 and Velocities of Figure 6–82
6–84 Velocity Analysis before and after Multiple Attenuation
6–85 Deconvolution Objectives
6–86 Information in a Correlogram
6–87 Whitening Deconvolution Representation in the Frequency Domain
6–88 Effect of Adding White Noise to the Input Amplitude Spectrum
6–89 Adding White Noise by Increasing Zero-lag Value of the Input Autocorrelation
6–90 Input Autocorrelation and the Information It Contains
6–91 Representation of Gapped Deconvolution Representation in the Frequency Domain
6–92 Comparison of Whitening and Gapped Deconvolution
6–93 Wavelet Shapes at Early, Middle, and Late Record Times
6–94 Design and Application Gates for Time-variant Deconvolution
6–95 Effect of Filter Length on Deconvolution of Trace with Five Reflections
6–96 Data Used to Illustrate TVD Parameter Testing
6–97 Autocorrelation Window Selection
6–98 Operator Length Tests
6–99 Prediction Length Tests
6–100 White Noise Tests
6–101 Example of TVD
6–102 Trace Decomposition
6–103 Source and Receiver Amplitude Spectra Extracted from Trace Decomposition
6–104 Only Geometric Spreading Applied and Same Record after Application of Surface Consistent Amplitude Correction
6–105 TVSW Flow Chart
6–106 Automatic Filter Design in TVSW
6–107 User-Defined Filters for TVSW
6–108 Three-Filter TVSW Example
6–109 Filter Output, Gain Output
6–110 Effect of Number of TVSW Filters on CMP Stack
6–111 Effect of Number of TVSW Filters on Amplitude Spectra
6–112 MBWP Models for Vibrator Records
6–113 MBWP Models for Dynamite Records
6–114 Absorption and Scattering
6–115 Representative Q Values
6–116 Evaluation of Q
6–117 Transition Zone Example of MBWP Application
6–118 Data of Figure 6–117 after MBWP
6–119 Wavelets after Decon but before MBWP and after Both Decon and MBWP
6–120 Effects of Absorption
6–121 Effect of Noise on Deconvolution
6–122 The Forward Q-Filter and Deconvolution
6–123 Phase Compensation
6–124 Cascaded Amplitude Compensation
6–125 Amplitude Compensation
6–126 Inverse-Q Example
6–127 Illustration of Residual Statics
6–128 Residual NMO and Residual Statics
6–129 Three CMPs with Residual Statics
6–130 The Reflection Residual Statics Method
6–131 Defining Windows for Residual Statics Analysis
6–132 Definition of Quality Factors Q_{ths} and \Delta_{ths}
6–133 Surface Consistent Travel Time Model
6–134 Decomposition of Residual Statics into Long, Medium, and Short Wavelength Statics
6–135 Reflection-based and Refraction-based Residual Statics
6–136 Increase in Dip of Multiples
6–137 Change in Multiple Period with Offset
6–138 Synthetic Example
6–139 Autocorrelation of Data in Figure 6–138
6–140 Radon Transform of the Data in Figure 6–138
6–141 Autocorrelation of Data in Figure 6–140
6–142 Data of Figure 6–140 After Gapped Deconvolution
6–143 Autocorrelation of Data in Figure 6–142
6–144 Inverse Radon Transform of the Data in Figure 6–142
6–145 Reverberation Sampling by Receivers
6–146 Modeling of Water Bottom Multiple Sequence from Previous Occurrence
6–147 Approximating the Water Bottom by a Straight Line
6–148 Model Used to Generate Synthetic Data
6–149 Synthetic Data Produced from Model of Figure 6–148
6–150 The Data of Figure 6–149 after Forward Extrapolation of One Round Trip through the Water Layer
6–151 Reflectivity Operators Designed for Seven Different Gates of Data in Figure 6–149
6–152 Result of Subtracting Predicted Multiples from Data of Figure 6–149
6–153 A CMP Stack Showing Strong Multiples
6–154 CMP Stack Section of Figure 6–153 after Application of WEMA
6–155 Source-generated and Receiver-generated Reverberations for Peg-leg Multiples
6–156 Input Record and Corrected Record for NMO Using Reverberation Velocity
6–157 NMO-Corrected Record of Figure 6–156 and Record Transformed into F-K Domain
6–158 F-K Record of Figure 6–157 after Velocity Filter Applied and Record Transformed into T-X Domain
6–159 The T-X Domain Record of Figure 6–158 and Record after Inverse NMO Corrections
6–160 Synthetic Data Used to Illustrate F-K Multiple Attenuation
6–161 Multiple Attenuation from CMP Stack
6–162 F-K Multiple Attenuation Using an Intermediate Velocity Function
6–163 F-K Multiple Attenuation Example
6–164 Synthetic Data Used to Illustrate Radon Transform Filtering
6–165 Data of Figure 6–164 Transformed into t-p Domain
6–166 Data of Figure 6–165 after Velocity Mutes Are Applied
6–167 Inverse Radon Transform of Data of Figure 6–166
6–168 Reflection from a Dipping Horizon
6–169 Conflicting Dips
6–170 Move Out from Conflicting Dips
6–171 Depth Point Smear in the Presence of Dip
6–172 Zero-offset Ray Paths for a Synclinal Reflector and Appearance on CMP Stack
6–173 Conventional Processing
6–174 Locus of Non-zero Reflection Points
6–175 Pre-stack Migration of a Spike Showing Input and Proper Migration
6–176 Three-step Imaging
6–177 Post-stack and Pre-stack Migration
6–178 Kirchhoff Impulse Response
6–179 DMO in the Common Offset Domain
6–180 The DMO Process
6–181 Depth Model of Six Point Scatterers Buried in a Constant Velocity
6–182 DMO Example Using Synthetic Data Derived from Model of Figure 6–181
6–183 Zero-offset Section Associated with the Depth Model in Figure 6–181
6–184 DMO Processing Stages for Synthetic Data of Figure 6–181
6–185 Using Incorrect Velocity for NMO Correction
6–186 CMP Gathers without DMO and with Kirchhoff DMO
6–187 Data Acquired Near a Major Fault, Conventional CMP Stack, and Post-Stack Migration
6–188 Velocity Analysis Displays Contoured in Correlation Coefficients
6–189 Data of Figure 6–187 after DMO
6–190 Data of Figure 6–187 after DMO, CMP Stack, Post-Stack Migration, and Pre-Stack Migration
6–191 Effect of Event Alignment on CMP Stack
6–192 Enlarged View of Time Scans Shown in Table 6–3
6–193 Two-sum Median Stack
6–194 Eight-sum Median Stack
6–195 Partial Stack to 12-fold Then Two-sum Median Stack
6–196 Comparison of Conventional CMP Stack and Median Stack
6–197 CMP Traces before NMO Correction and Stack-flat Reflector and CMP Traces before NMO Correction and Stack
6–198 CMP Traces before NMO Correction and Stack-Dipping Reflector and CMP Traces before NMO Correction and Stack
6–199 Dipping Reflector in True Position and as Seen on CMP Stack Section
6–200 A Buried Focus or Syncline in Its True Perspective and a Bowtie
6–201 Anticlinal Reflector and Its Appearance on CMP Stack
6–202 Geology and CMP Stack
6–203 Dipping Reflector as Seen on CMP Stack Section and after Migration
6–204 Stack and Migration
6–205 Imaging Hierarchy
6–206 Circular Migration
6–207 Hyperbolic Migration
6–208 Distortion Caused by Refraction of Light
6–209 Representation of a Point Aperture and the Diffraction Hyperbola Produced from It
6–210 Set of Closely Spaced Point Apertures and Resultant of Diffraction Hyperbolas Produced from Them
6–211 Summation of Amplitudes along the Hyperbola
6–212 Downward Continuation
6–213 Downward Continuation Migration with Depth Slices at Different Layers
6–214 Fit of Parabola to Hyperbola, Low Order Explicit
6–215 Fit of Parabola to Hyperbola, High Order Explicit
6–216 Constant Velocity Stolt Migration Flow Chart
6–217 Reduction of Bandwidth in Migration
6–218 Stolt Migration Example, Multi-dip Model
6–219 Gazdag’s Phase Shift Migration Flow Chart
6–220 Comparison of Kirchhoff and Downward Continuation Migration Approaches
6–221 Effect of Phase and Bandwidth on Migration of Diffraction
6–222 Diffraction in T-X and F-K
6–223 A Spike in the T-X and F-K Domains
6–224 Data Wrap Around
6–225 Preventing Wrap-Around Effects
6–226 Truncated Diffractions
6–227 Migration Wave-fronting
6–228 Migration of Multi-dip Model with 6 to 36 Hz Bandwidth
6–229 Migration of Multi-dip Model with 6 to 90 Hz Bandwidth
6–230 Effect of Spatial Sampling on Migration
6–231 Spatial Aliasing and Migration—the Role of Interpolation
6–232 Kirchhoff Impulse Response
6–233 Chatter on the Limbs of the Kirchhoff Impulse Response
6–234 Finite Difference Impulse Response
6–235 Stolt Impulse Response When W = 1 and 0.5
6–236 Aperture Width Test, Multi-Dip Model
6–237 Aperture Width Test, Diffraction Migration
6–238 Aperture Width Test, Field Data
6–239 Aperture Width and Random Noise
6–240 Maximum Dip Test, Multi-dip Model
6–241 Maximum Dip Test, Field Data with Aperture Width of 384 Traces
6–242 Effect of Velocity Errors on Kirchhoff Migration
6–243 Depth Step Test, Implicit Finite Difference with a Sample Period of 4 ms
6–244 The Zig-zag Effect
6–245 Depth Step Test, Implicit Finite Difference Migration of Diffractions
6–246 A CMP Stack Section and Sketch Highlighting Salient Features of the Stack
6–247 Implicit Finite Difference Migration of the CMP Stack Section of Figure 6–246
Using a Depth Step of 40 ms and a Sketch Pointing Out Significant Aspects of the Migration
6–248 Implicit Finite Difference Migration of the CMP Stack Section of Figure 6–246
Using a Depth Step Of 20 ms and a Sketch Pointing Out Significant Aspects of the Migration
6–249 Comparison of Parabolic and Hyperbolic Time Shifts
6–250 Velocity Test, Implicit Finite Difference Migration, Depth Step of 20 ms
6–251 Comparison of Finite Difference Algorithms, Multi-dip Model
6–252 Comparison of Finite Difference Algorithms, Three-point Aperture Model
6–253 Parameter Test for Stretch Factor W in Stolt Migration
6–254 Depth Step Test, Phase Shift Migration, and Multi-dip Model
6–255 Depth Step Test, Phase Shift Migration, and Field Data
6–256 Effect of Velocity Errors on Phase-shift Migration
6–257 Salt Model Used to Demonstrate Extended Stolt Migration
6–258 Stolt Migration of Salt Model, Field Data W = 0.3, and Velocity Error
6–259 Stolt Migration of Salt Model, Field Data W = 0.5, and Velocity Error
6–260 Velocity Data Used to Develop Velocities for the Four-stage Stolt Migration of Figure 6-259
6–261 Four-stage Stolt Migration at W = 0.9 of Model and Field Data
6–262 Phase-shift Migration of Model and Field Data
6–263 Point Scatterer Geometry
6–264 Kirchhoff Pre-stack Time Migration
6–265 Conceptual View of Pre-stack Depth Migration
6–266 Pre-stack Depth Migration—Velocity and Focusing
6–267 Up- and Down-going Waves
6–268 Overthrust Model
6–269 Synthetic Data from Overthrust Model Processed with Kirchhoff DMO, CMP Stack, and Steep-dip, Post-Stack Migration
6–270 Pre-stack Depth Migration of Synthetic Data
6–271 Shot-geophone Sinking Depth Migration Flow Chart
6–272 Amplitude Spectrum of Migrated Trace
6–273 Band-pass Filter Response and Corner Frequencies
6–274 Filter Scan
6–275 Filter Scan Interpretation
6–276 Interpolation and Extrapolation of Band-pass Filter Application Times
6–277 Time-to-depth Conversion
6–278 Trace Display Modes
6–279 Display Gain
6–280 Variations in Horizontal Scale
6–281 Variations in Vertical Scale
6–282 Color Display Options
6–283 Line Orientations
6–284 Migrated Cross-line Profiles for Lines Designated by D in Figure 6-283
6–285 Migrated In-line Profiles for Lines Designated by D in Figure 6-283
6–286 3-D Migrated Profile for Diagonal Line in Figure 6-283
6–287 Constructing Structure Maps from Time Slices
6–288 Time Slice through a Salt Dome
6–289 Bright Spots on Vertical and Horizontal Sections
6–290 Workshop
6–291 Workshop
6–292 Workshop
6–293 Workshop
6–294 Workshop
6–295 Workshop
6–296 Workshop
6–297a Workshop
6–297b Workshop

7–1 Typical Exploration Sequence
7–2 Focusing in Anticlines and Synclines
7–3 Bow Tie Effect of Buried Focus
7–4 The Zero-offset Stack Shows the Focusing of the Narrow, Deep-seated Syncline and the Migrated Stack Shows the Bow Tie Untied
7–5 Shadow Zones
7–6 Zero-offset Section of Horst Block
7–63 Coastal On-lap as a Function of Eustatic Level Change, Subsidence, and Sediment Supply
7–64 Three Scenarios during Coastal On-lap
7–65 Coastal On-lap Indicates a Relative Still Stand of Sea Level
7–66 Downward Shift in Coastal On-lap
7–67 Method for Calculating the Amount of Coastal On-lap and Downward Shift as a Measurement of Relative Fall of Sea Level
7–68 Continental Margin Clinoform Analysis
7–69 Downward Shift in Coastal On-lap in San Joaquin, California
7–70 Progradational and Marine On-lap Cycles, Tertiary, North Sea
7–71 Relative Changes in Sea Level, Concepts of Paracycles, Cycles, and Super Cycles
7–72 Correlation of Regional Cycles of Relative Sea-level Change and Averging to Construct Global Cycles
7–73 Estimation of Eustatic Change from Jurassic to Holocene
7–74 First- and Second-order Global Cycles of Relative Sea-level Change
7–75 Global Cycle of Sea-level Changes, Jurassic to Tertiary
7–76 Control of Sedimentation and Depositional System
7–77 Reflection Terminations Patterns and Types of Discontinuity
7–78 Reflection Termination Patterns Types of Discontinuities That Define Cyclic Sequences
7–79 Accommodation Envelope as a Function of Eustacy and Subsidence
7–80 Eustacy, Relative Sea Level, Water Depth as a Function of Sea Surface, Water Bottom and Datum Position
7–81 Accommodation as a Function of Eustacy and Subsidence
7–82 Relative Sea Level as a Function of Eustacy and Subsidence
7–83 Response of Relative Sea Level to Differential Tectonic Thermal Subsidence
7–84 Effect of Relative Sea Level Rise on Coastline Position
7–85 Type 1 Unconformity
7–86 Response of Sedimentation on an Interval of Rapid Eustatic Fall
7–87 Distribution Of Low Stand Wedge Deposits Along The Outer Shelf/Upper Slope
7–88 New Space Added During an Interval of Constant Rate of Relative Sea Level Rise Following Type 1 Unconformity
7–89 Bayline Position and Low Stand Deposits During Rapid Short- and Long-period Eustatic Fall
7–90 Elements of Coastal On-lap Curve
7–91 Type 2 Unconformity
7–92 Effect of Equilibrium Point Migration on Fluvial Deposition in Prograding Environment
7–93 Effect of Shifting Equilibrium Point on Fluvial Deposition
7–94 Response of the Topset Bed Thickness to Eustatic Fall
7–95 Relationship Between Eustatic Sea Level and Phases of Erosion and System Track Deposition
7–96 Types Of Parasequence Sets
7–97 Recognizing and Dating Unconformities
7–98 Unconformity Types
7–99 Type 1 Erosion
7–100 Relation between Transgression or Regression and Eustatic Sea Level
7–101 A Deposition Sequence in Depth and Time and Its Relation to Marine Condensed Section, Coastal On-lap, Shoreline, and Eustatic Sea Level
7–102 Relationship of Sequence to Relative Changes of Coastal On-lap, Types and Ages of Unconformities, Condensed Intervals/Ages, and Inferred Eustatic Sea-level Changes
7–103 Estimation of Worldwide Hydrocarbon Reserve in Clastic Depositional Sequences
7–104 Diagrammatic Seismic Section Showing Common Stratigraphic Elements and Terminations
7–105 Seismic Section Showing System Tracts and Other Elements of Depositional Sequences
7–106 An Idealized Siliciclastic Depositional Sequence Showing Depositional System Tracts and Their Bounding Surface
7–107 Schematic Diagram of Carbonate Lithofacies Distribution in a Sequence
7–108 Carbonate Facies Belts with Representative Textural Types
7–109 Diagrammatic Mixed Carbonate and Clastic Sequence Showing Lithologies and Sequence-stratigraphic Elements
7–110 High-stand Systems Tract
7–111 Carbonate High-stand Deposition
7–112 Low-stand System Tract Basin Floor Fan and Siliciclastic Low-stand Systems Tract during Basin Floor Fan Deposition
<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-113</td>
<td>Low-stand Systems Tract Slope Fan and Siliciclastic Low-stand Systems Tract during Slope Fan Deposition</td>
</tr>
<tr>
<td>7-114</td>
<td>Low-stand Systems Tract Prograding Wedge and Siliciclastic Low-Stand Systems Tract during Prograding Wedge Deposition</td>
</tr>
<tr>
<td>7-115</td>
<td>Different Settings for Low-stand Tract Deposition</td>
</tr>
<tr>
<td>7-116</td>
<td>Type 1 Carbonate and Carbonate Early Low-stand Systems Tract</td>
</tr>
<tr>
<td>7-117</td>
<td>Transgressive Systems Tract and Siliciclastic Transgressive System Tracts</td>
</tr>
<tr>
<td>7-118</td>
<td>Carbonate Late Low-stand and Transgressive System Tracts</td>
</tr>
<tr>
<td>7-119</td>
<td>Sediments Accommodations Potential and Its Relationship to the Marine-condensed Sediments</td>
</tr>
<tr>
<td>7-120</td>
<td>The Stratigraphic Relationship of Marine Condensed Sections to Others Depositional Systems Tracts</td>
</tr>
<tr>
<td>7-121</td>
<td>Marine Condensed Sections and Their Relationship with the Stratigraphic Succession</td>
</tr>
<tr>
<td>7-122</td>
<td>Depth and Time Sections Showing the Marine Condensed Sections within the Sequence Frame Work</td>
</tr>
<tr>
<td>7-123</td>
<td>Siliciclastic Lithofacies and Siliciclastic Shelf-margin Systems Tract</td>
</tr>
<tr>
<td>7-124</td>
<td>Type 2 Carbonate Sequence Diagram Showing a Slow Fall of the Sea Level Interpreted as a Type 2 Sequence</td>
</tr>
<tr>
<td>7-125</td>
<td>Sequence Stratigraphy Depositional Model Showing Carbonate and Evaporite Lithofacies, Distribution of Carbonate and Evaporite Lithofacies within the Deposition Sequence Framework</td>
</tr>
<tr>
<td>7-126</td>
<td>Stratigraph Pattern in Type 1 Sequence—Stratal Pattern in Type 1 Sequence Deposited in the Basin with Flat Margin</td>
</tr>
<tr>
<td>7-127</td>
<td>Stratigraph Pattern in Type 1 Sequence Deposited in a Basin with Ramp Margin</td>
</tr>
<tr>
<td>7-128</td>
<td>Stratal Pattern in Type 1 Sequence Deposited in a Basin with Ramp Margin</td>
</tr>
<tr>
<td>7-129</td>
<td>Possible Reservoir Quality Sand in Siliciclastic Sequence</td>
</tr>
<tr>
<td>7-130</td>
<td>Summary of Factors Affecting the Hydrocarbon-play Potential of Siliciclastic Deposition Systems Tracts</td>
</tr>
<tr>
<td>7-131</td>
<td>Summary of Factors Affecting the Hydrocarbon-play Potential of Siliciclastic Deposition Systems Tracts</td>
</tr>
<tr>
<td>7-132</td>
<td>Systems Tracts in the Gulf Coast Basin</td>
</tr>
<tr>
<td>7-133</td>
<td>Systems Tracts within Depositional Sequences Deposited Basinward of USA Gulf Coast Contemporaneous Growth Faults</td>
</tr>
<tr>
<td>7-134</td>
<td>Triassic Chronostratigraphic and Eustatic-cycle Chart</td>
</tr>
<tr>
<td>7-135</td>
<td>Jurassic Chronostratigraphic and Eustatic-cycle Chart</td>
</tr>
<tr>
<td>7-136</td>
<td>Cretaceous Chronostratigraphic and Eustatic-cycle Chart</td>
</tr>
<tr>
<td>7-137</td>
<td>Cenozoic Chronostratigraphic and Eustatic-cycle Chart</td>
</tr>
<tr>
<td>7-138</td>
<td>High-resolution Seismic Recording Using Vibroseis</td>
</tr>
<tr>
<td>7-139</td>
<td>High-resolution Seismic Section</td>
</tr>
<tr>
<td>7-140</td>
<td>High-frequency Marine Seismic Section</td>
</tr>
<tr>
<td>7-141</td>
<td>Vertical Seismic Profiling Concepts</td>
</tr>
<tr>
<td>7-142</td>
<td>Up- and Downgoing Events</td>
</tr>
<tr>
<td>7-143</td>
<td>Raw, Up-going and Down-going Events</td>
</tr>
<tr>
<td>7-144</td>
<td>Identification of Seismic Reflectors</td>
</tr>
<tr>
<td>7-145</td>
<td>Separation of Up- and Downgoing Events in F-K Space</td>
</tr>
<tr>
<td>7-146</td>
<td>Comparison of VSP with Synthetic Seismogram</td>
</tr>
<tr>
<td>7-147</td>
<td>Predicting Interval Velocity Ahead of the Bit</td>
</tr>
<tr>
<td>7-148</td>
<td>Predicting Depth of a Seismic Reflector</td>
</tr>
<tr>
<td>7-149</td>
<td>Looking Ahead of the Bit</td>
</tr>
<tr>
<td>7-150</td>
<td>Increase in Angle of Incidence with Offset</td>
</tr>
<tr>
<td>7-151</td>
<td>AVO Classes</td>
</tr>
<tr>
<td>7-152</td>
<td>Angle Gathers</td>
</tr>
<tr>
<td>7-153</td>
<td>Two-term AVO Inversion</td>
</tr>
<tr>
<td>7-154</td>
<td>Portion of a CMP Stack Section Showing a Bright Spot, P-wave Intercept Section, Pseudo S-wave Section, and Poisson’s Ratio Section</td>
</tr>
<tr>
<td>7-155</td>
<td>Orientation of P- and S-wave Particle Motion</td>
</tr>
<tr>
<td>7-156</td>
<td>Mode Conversion of Ray Paths</td>
</tr>
<tr>
<td>7-157</td>
<td>Schematic Representation of Three-component Records</td>
</tr>
<tr>
<td>7-158</td>
<td>F-K Domain Representation of Vertical Component Record in Figure 7-157</td>
</tr>
<tr>
<td>7-159</td>
<td>Vertical Component Record of Figure 7-157 after NMO Corrections Using S-wave Velocities</td>
</tr>
<tr>
<td>7-160</td>
<td>Vertical Component Record of Figure 7-157</td>
</tr>
<tr>
<td>7-161</td>
<td>The Near Surface as Seen by P- and S-waves</td>
</tr>
<tr>
<td>7-162</td>
<td>Comparison of P-P and P-SV Ray Paths</td>
</tr>
<tr>
<td>7-163</td>
<td>Ray Paths of CRP Traces for P-SV</td>
</tr>
</tbody>
</table>
List of Figures

7-164 Representative P-P, P-SV, and SH-SH Traces
7-165 Traces of Figure 7–164 after Time Scaling to Enhance Event Correlation
7-166 Shear-Wave and P-Wave Sections
7-167 Unpaired Reflections
7-168 Rock Velocities Versus Lithology from Well Logs
7-169 Rock Velocity Versus Lithology from Laboratory Examples
7-170 Flowchart for a 4-D Project
7-171 Wedge Model with Gas Cap
7-172 Relationships among Reservoir Thickness, Gas Saturation, and Amplitude Change
7-173 Raw Difference after Applying Global Equalization with a Single Scaler
7-174 Difference after Global Phase and Amplitude Match
7-175 Difference after Time- and Space-variant Cross-equalization
7-176 Difference along the Reservoir Horizon after Global Equalization
7-177 Difference along the Reservoir Horizon after Local Equalization
7-178 Seismic Difference after Matching with Cumulative Production
7-179 Residual Gas Saturation Map after Material Balance Matching and Calibration
7-180 Perspective View of the Sand Structure Containing the Currently Producing 4500 ft Reservoir
7-181 Smoothed Production History of the 4500 ft Reservoir
7-182 Inverted Legacy Data Volume Showing Acoustic Impedance
12 ms below the Top of the Tracked 4500 ft Horizon
7-183 Time-lapse Difference Mapped on the 4500 ft Reservoir
7-184 Changes in P-wave Velocity, Poisson's Ratio, and Acoustic Impedance with Time of Production
7-185 Amplitudes Extracted from Partial-offset Stacked P-wave Data for the 4500 ft Reservoir
from Phases I and II
7-186 Amplitudes Extracted from Partial-offset Stacked P-wave Data for the Little Neighbor Reservoir
from Phases I and II

A-1 Earth Model for a Single Horizontal Layer
A-2 Two Horizontal Layers Earth Model
A-3 Earth Model for a Single Dipping Layer
A-4 Two Dipping Layers Earth Model

B-1 Data Input Card
B-2 Track/Bit Conventions
B-3 SEG A and B Formats—Header Block
B-4 SEG A and B Formats—Header Block (continued)
B-5 SEG A Format—Data Block
B-6 SEG B Format—Data Block
B-7 SEG B Format—Data Block (continued)
B-8 SEG X Format
B-9 SEG C Format—Data Block
B-10 SEG Y Format
B-11 SEG Y Format, Reel Identification Header—EBCDIC Image Block
B-12 SEG Y Format, Reel Identification Header—Binary Coded Block
B-13 SEG Y Format, Trace Data Block
B-14 SEG Y Format, Trace Identification Header Written in Binary Code
B-15 SEG Y Format, Trace Identification Header Written in Binary Code (continued)
B-16 SEG D Format
B-17 SEG D Format, General Header
B-18 SEG D Format, Channel Set Descriptor
B-19 SEG D Format, Channel Set Examples
B-20 SEG D Format, Start of Scan and Timing Word
B-21 SEG D Format, Demultiplexed Trace Header
B-22 Format Codes
B-23 SEG D Format, Data Recording Method, 2/ Byte Binary Exponent-multiplexed
B-24 SEG D Format, Data Recording Method, 2/ Byte Binary Exponent-demultiplexed
B-25 SEG D Format, Data Recording Method, Four Byte Hexadecimal Exponent - Multiplexed
B-26 SEG D Format, Data Recording Method, 32-Bit IEEE Format
C–1 Heave and Throw in a Normal Fault
C–2 Designation of Trap Types
C–3 Incident, Reflected, and Refracted Rays
C–4 T-X Plot with Velocities and Delay Times Labeled
C–5 Vector Diagram
C–6 Answer to Question 3
C–7 Receiver and Source Array Responses and Combined Source and Receiver Response
C–8 Wiggle Trace (left) and Variable Area (right) Trace Displays
C–9 Optimum Value for Maximum Correlation Shift
C–10 (a) CMP Stack, (b) Migrated Stack, and (c) Sketch
C–11 Optimum Migration Velocity
C–12 Four CMP Stacks of Same Data with Different Trace Spacings
C–13 Phase Shift Migrations of the Stacks Shown in Figure C–12
List of Tables

2-1 Divisions of Geologic Time
2-2 Clastic Grain Size Classification
2-3 Chemical Composition of Petroleum
2-4 Reservoir Rock Porosity
2-5 Reservoir Rock Permeability
2-6 Rock Grid
3-1 Source-generated Noise
3-2 Ambient Noise
3-3 Nyquist Frequency
3-4 Vertical Resolution
3-5 Variation of the Fresnel Zone with Time Frequency
3-6 T-X and p Relationships
3-7 Frequency Table
5-1 Surface-based Navigation Systems
5-2 Basic GPS Overview
5-3 Airgun Specs and Array Parameters
5-4 Correlation Ghost Start and Stop Times
5-5 Selecting Geophone Parameter Values
5-6 In-water Systems Comparisons
5-7 Number Systems
5-8 Pros and Cons of Various Layout Strategies
6-1 Variation of Δt_{NMO} with Time, Velocity, and Offset
6-2 NMO Velocities
6-3 Sorted Trace Amplitudes, Median, and Average Values
6-4 Post-stack Migration Summary
6-5 Relative Processing Speeds of Migration Algorithms
6-6 Pre-stack Time and Depth Migration Types
6-7 Processes and Effect
7-1 2-D Models
7-2 P-P and P-SV CRP Trace Attribute Comparisons
7-3 Acoustic Impedance Change Caused by Gas Saturation Change
C-1 Output Frequencies
Caption and Courtesy List

Fig. 1–1 Seismic Waves from Big Bertha's Firing
Fig. 1–2 Dip Shooting
Fig. 1–3 Typical 2-D Seismic Geometry
Fig. 1–4 Continuous or Single-fold Subsurface Coverage
Fig. 1–5 CMP Shooting
Fig. 1–6 Multi-fold Shooting
Fig. 1–7 Meandering Stream Channel
Fig. 1–8 3-D Prospect Layout
Fig. 2–1 A Fossil Sequence
Fig. 2–2 Dating Rocks from Fossils
Fig. 2–3 Internal Structure of the Earth
Fig. 2–4 The Lithosphere
Fig. 2–5 Mountains, Ridges, and Rises of the World
Fig. 2–6 Seafloor Spreading
Fig. 2–7 Mantle Convection Currents
Fig. 2–8 Tectonic Plate Boundaries
Fig. 2–9 Tectonic Plate Model
Fig. 2–10 Pangea, the Universal Continent, about 200 Million Years Ago (modified from R.S. Dietz and J.C. Holden, Scientific American, 1970)
Fig. 2–11 The Continents in Their Present Positions and Their Projected Positions 50 Million Years from Now (After R.S. Dietz and J.C. Holden, Scientific American, 1970)
Fig. 2–12 Top Part of the Earth's Crust
Fig. 2–13 Formation of Igneous Rocks
Fig. 2–14 The Rock Cycle
Fig. 2–15 Sorting
Fig. 2–16 Prevalent Sedimentary Rock Types
Fig. 2–17 The East Texas Oil Field
Fig. 2–18 Strike and Dip
Fig. 2–19 Strike, Dip, and Plunge
Fig. 2–20 Stress-strain Relationship
Fig. 2–21 Types of Stress
Fig. 2–22 Folding of Rocks
Fig. 2–23 Monoclines, Synclines, and Anticlines
Fig. 2–24 Terms Describing Anticlines
Fig. 2–25 Symmetric and Asymmetric Folds
Fig. 2–26 Anticlinal Dome, Overhead View
Fig. 2–27 Eroded Folds
Fig. 2–28 An Eroded, Plunging Syncline in Northwest Africa (Photo by U.S. Air Force) and an Eroded, Plunging Anticline in the Zagros Mountains of Iran (Photo by Aerofilms, Ltd., through courtesy of John S. Shelton)
Fig. 2–29 Joints
Fig. 2–30 Fault Motion
Fig. 2–31 Dip Slip Faults
Fig. 2–32 Well Bores through Normal and Reverse Faults
Fig. 2–33 Fault Displacement along the Great Glen Fault
Fig. 2–34 Horsts and Grabens
Fig. 2–35 Rollover Anticline
Fig. 2–36 The Fuel Cycle
Fig. 2–37 Molecular Forms of Petroleum
Fig. 2–38 Migration of Hydrocarbons
Fig. 2–39 Components of Clastic Sedimentary Rocks
Fig. 2–40 The Oil Window
Fig. 2–41 Effect of Grain Size on Porosity and Permeability
Fig. 2–42 Geothermal Gradient in Sedimentary Basins
Fig. 2-43 Hydrostatic Pressure Gradient
Fig. 2-44 Anticline Trap
Fig. 2-45 Reservoir Spill Point
Fig. 2-46 Reservoir Fluid Types
Fig. 2-47 Asymmetrical Anticline Trap
Fig. 2-48 Fault Trap
Fig. 2-49 Growth Fault or Down-to-the-Basin Fault
Fig. 2-50 Fault Cutting Reservoir into Separate Accumulations
Fig. 2-51 Fault Trap with Multi-Level Production
Fig. 2-52 Western Overthrust Belt
Fig. 2-53 The Stratfjord Field
Fig. 2-54 Oil Fields Formed by Angular Unconformities
Fig. 2-55 Production from Sands Above Angular Unconformity, and Cross Section through the Bolivar Coastal Fields in Lake Maracaibo, Venezuela
Fig. 2-56 Reef Facies
Fig. 2-57 Reef Configurations
Fig. 2-58 The Alberta Reef Trend and the Redwater Oil Field
Fig. 2-59 Michigan Basin Silurian Reef Trend
Fig. 2-60 Lenticular Sand Shapes and Origin
Fig. 2-61 Bush City Pool
Fig. 2-62 Coastal Sand Pinch-outs
Fig. 2-63 Giant Oil Fields Formed by Salt Domes
Fig. 2-64 Fractured Reservoir Rock
Fig. 2-65 Granite Wash
Fig. 2-66 (workshop)
Fig. 2-67 (workshop)
Fig. 2-68 (workshop)
Fig. 2-69 (workshop)
Fig. 2-70 (workshop)
Fig. 2-71 (workshop)
Fig. 2-72 (workshop)
Fig. 2-73 (workshop)
Fig. 2-74 (workshop)
Fig. 2-75 (workshop)
Fig. 2-76 (workshop)

Table 2-1 Divisions of Geologic Time
Table 2-2 Clastic Grain Size Classification
Table 2-3 Chemical Composition of Petroleum
Table 2-4 Reservoir Rock Porosity
Table 2-5 Reservoir Rock Permeability
Table 2-6 Rock Grid

Fig. 3-1 Basic Elastic Moduli and Poisson's Ratio
Fig. 3-2 P- and S-waves
Fig. 3-3 SV and SH Waves
Fig. 3-4 Rayleigh Waves
Fig. 3-5 Love Waves
Fig. 3-6 Basic Wave Parameters
Fig. 3-7 Fermat's Principle
Fig. 3-8 Snell's Law
Fig. 3-9 Critical Refraction and Head Waves
Fig. 3-10 Wavefronts and Rays
Fig. 3-11 Wavefronts from a Source
Fig. 3-12 Huygen's Principle
Fig. 3-13 P- and SV-wave Reflection Coefficients
Fig. 3-14 P-wave Normal Incidence Reflection and Transmission
Fig. 3-15 Earth Reflectivity Function
Fig. 3-16 Noise-Free Seismic Trace Derived from Earth Reflectivity Function
<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-17</td>
<td>Direct Waves and Shallow Reflections</td>
</tr>
<tr>
<td>3-18</td>
<td>Reverberations or Water Bottom Multiple Reflections</td>
</tr>
<tr>
<td>3-19</td>
<td>Multiple Reflections</td>
</tr>
<tr>
<td>3-20</td>
<td>Guided Waves</td>
</tr>
<tr>
<td>3-21</td>
<td>Diffractions</td>
</tr>
<tr>
<td>3-22</td>
<td>Effect of Ambient Noise on Seismic Trace</td>
</tr>
<tr>
<td>3-23</td>
<td>Schematic Land Seismic Record</td>
</tr>
<tr>
<td>3-24</td>
<td>A Seismic Shot Record</td>
</tr>
<tr>
<td>3-25</td>
<td>Digital Recording</td>
</tr>
<tr>
<td>3-26</td>
<td>Effect of Sample Period</td>
</tr>
<tr>
<td>3-27</td>
<td>Aliasing</td>
</tr>
<tr>
<td>3-28</td>
<td>Measuring the Earth's Impulse Response</td>
</tr>
<tr>
<td>3-29</td>
<td>Convolution</td>
</tr>
<tr>
<td>3-30</td>
<td>Cross-correlation of y_p onto x_m</td>
</tr>
<tr>
<td>3-31</td>
<td>Cross-correlation of x_m onto y_p</td>
</tr>
<tr>
<td>3-32</td>
<td>Autocorrelation of x_m</td>
</tr>
<tr>
<td>3-33</td>
<td>Single Frequency Sinusoids</td>
</tr>
<tr>
<td>3-34</td>
<td>Amplitude and Phase Spectra for Single-frequency Sinusoids</td>
</tr>
<tr>
<td>3-35</td>
<td>Signal Synthesis and Decomposition</td>
</tr>
<tr>
<td>3-36</td>
<td>Time and Frequency Domains</td>
</tr>
<tr>
<td>3-37</td>
<td>Effect of Time Reversal</td>
</tr>
<tr>
<td>3-38</td>
<td>Frequency Filter Types</td>
</tr>
<tr>
<td>3-39</td>
<td>Band-pass Filtering</td>
</tr>
<tr>
<td>3-40</td>
<td>Anti-alias Filters</td>
</tr>
<tr>
<td>3-41</td>
<td>Phase Definitions</td>
</tr>
<tr>
<td>3-42</td>
<td>Effect of Adding 90° to Phase Spectrum</td>
</tr>
<tr>
<td>3-43</td>
<td>Changes in Waveform with Successive Additions of 90° Phase</td>
</tr>
<tr>
<td>3-44</td>
<td>Effect of Adding Linear Phase-to-phase Spectrum</td>
</tr>
<tr>
<td>3-45</td>
<td>Linear Phase Slope and Time Shift</td>
</tr>
<tr>
<td>3-46</td>
<td>Phase and Wavelet Shape</td>
</tr>
<tr>
<td>3-47</td>
<td>Minimum-, Maximum-, and Mixed-phase Wavelets</td>
</tr>
<tr>
<td>3-48</td>
<td>Effect of Bandwidth</td>
</tr>
<tr>
<td>3-49</td>
<td>Bandwidth and Vertical Resolution</td>
</tr>
<tr>
<td>3-50</td>
<td>A Wedge or Pinch-out</td>
</tr>
<tr>
<td>3-51</td>
<td>Phase and Resolution</td>
</tr>
<tr>
<td>3-52</td>
<td>Horizontal Resolution and Fault Displacement</td>
</tr>
<tr>
<td>3-53</td>
<td>The Fresnel Zone</td>
</tr>
<tr>
<td>3-54</td>
<td>Spatial Sampling</td>
</tr>
<tr>
<td>3-55</td>
<td>A Seismic Record as a Two-dimensional Array</td>
</tr>
<tr>
<td>3-56</td>
<td>The F-K Plane</td>
</tr>
<tr>
<td>3-57</td>
<td>Noise Record in T-X and F-K Domains</td>
</tr>
<tr>
<td>3-58</td>
<td>Plane Wave Incident on Surface</td>
</tr>
<tr>
<td>3-59</td>
<td>Spatial Aliasing as a Function of Dip and Frequency</td>
</tr>
<tr>
<td>3-60</td>
<td>Linear Events in T-X and F-K</td>
</tr>
<tr>
<td>3-61</td>
<td>Linear Dipping Events</td>
</tr>
<tr>
<td>3-62</td>
<td>Effect of Group Interval on Spatial Aliasing</td>
</tr>
<tr>
<td>3-63</td>
<td>Separation of Signal and Noise in F-K</td>
</tr>
<tr>
<td>3-64</td>
<td>Definition of the Ray Parameter</td>
</tr>
<tr>
<td>3-65</td>
<td>The Radon Transform</td>
</tr>
<tr>
<td>3-66</td>
<td>Event Mapping between T-X and $t-p$ Domains</td>
</tr>
<tr>
<td>3-67</td>
<td>CMP Record in T-X Domain and $t-p$ Domain</td>
</tr>
<tr>
<td>3-68</td>
<td>Trace Interpolation with the Radon Transform</td>
</tr>
<tr>
<td>3-69</td>
<td>A Clock Pendulum and Its Energy Cycle</td>
</tr>
<tr>
<td>3-70</td>
<td>Complex Trace Analysis</td>
</tr>
<tr>
<td>3-71</td>
<td>(workshop)</td>
</tr>
<tr>
<td>3-72</td>
<td>(workshop)</td>
</tr>
<tr>
<td>3-73</td>
<td>(workshop)</td>
</tr>
<tr>
<td>3-74</td>
<td>(workshop)</td>
</tr>
<tr>
<td>3-75</td>
<td>(workshop)</td>
</tr>
</tbody>
</table>
Table 3–1 Source-Generated Noise
Table 3–2 Ambient Noise
Table 3–3 Nyquist Frequency
Table 3–4 Vertical Resolution
Table 3–5 Variation of the Fresnel Zone with Time and Frequency
Table 3–6 T-X and t-p Relationships
Table 3–7 Output Frequencies for Various Sample Periods

Fig. 4–1 Layout for Intensive Refraction Shooting
Fig. 4–2 T-X Plot for Inline Refraction Shooting
Fig. 4–3 Simplified Earth Model based on Data from Figure 4–2
Fig. 4–4 Arc and Broadside Shooting
Fig. 4–5 (workshop)

Fig. 5–1 Target Reference
Fig. 5–2 Simple Example of Vertical Reference Datum
Fig. 5–3 Geoid
Fig. 5–4 Horizontal Reference Datum Example
Fig. 5–5 Geodetic Latitude
Fig. 5–6 Longitude Measurement
Fig. 5–7 Horizontal Reference Datum
Fig. 5–8 Geocentric and Non-Geocentric Ellipsoids
Fig. 5–9 Datum Transformation
Fig. 5–10 Map Projection
Fig. 5–11 Range-Range LOPs
Fig. 5–12 GPS Receivers and Antenna
Fig. 5–13 Antenna Motion
Fig. 5–14 Source and Receiver Assumptions for 2-D Recording
Fig. 5–15 Cable Feathering
Fig. 5–16 Streamer Curvature
Fig. 5–17 Source and Receiver Positioning, 1985–1991 and Current
Fig. 5–18 Vessel Heading Terms
Fig. 5–19 Bird/Compass on Test Rig (courtesy WesternGeco)
Fig. 5–20 Traditional Applications—Cable Shaping
Fig. 5–21 Acoustic Configuration Diagram (courtesy WesternGeco)
Fig. 5–22 An Integrated Solution
Fig. 5–23 Statistical Analysis
Fig. 5–24 The Airgun Technique
Fig. 5–25 Airgun Operation
Fig. 5–26 The Bubble Effect
Fig. 5–27 Airgun Pressure—Volume Relationship
Fig. 5–28 Waveform Synthesis by Airgun Arrays
Fig. 5–29 Measurement of the Far-field Signature
Fig. 5–30 Time Domain Attributes
Fig. 5–31 Airgun Frequency Domain Attributes
Fig. 5–32 Airgun Array Signatures and Parameters
Fig. 5–33 Signature Variation with Frequency and Depth
Fig. 5–34 A Single Sleeve Gun, a Disassembled Sleeve Gun, a Sleeve Gun with a Mounting Harness, and a Family of Sleeve Guns (courtesy WesternGeco)
Fig. 5–35 Side View of a Typical Sub-array Configuration
Fig. 5–36 Plan View of a Typical Source Array
Fig. 5–37 Streamer and Source Depth Ghost Notches
Fig. 5–38 Ghost Response at 5 and 10 m
Fig. 5–39 Source Array Effects
Fig. 5–40 The Explosive Technique
Fig. 5–41 Explosive Source Operation
Fig. 5–42 Measuring the Far-Field Signature of an Explosive Source
Fig. 5–43 Effect of Charge Size
Fig. 5–44 Charge Depth Test (After M.R. Hewitt, Seismic Data Acquisition Co., 1980)
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-45</td>
<td>Explosive Cord as a Seismic Energy Source</td>
</tr>
<tr>
<td>5-46</td>
<td>Truck-Mounted Vibrator Components (courtesy WesternGeco)</td>
</tr>
<tr>
<td>5-47</td>
<td>Side View of a Truck-Mounted Vibrator (courtesy WesternGeco)</td>
</tr>
<tr>
<td>5-48</td>
<td>Vibrode Operation</td>
</tr>
<tr>
<td>5-49</td>
<td>Effect of Spike on Vibrode Cross-Correlations</td>
</tr>
<tr>
<td>5-50</td>
<td>Vibrode Correlation</td>
</tr>
<tr>
<td>5-51</td>
<td>Klauder Wavelet and Resolution</td>
</tr>
<tr>
<td>5-52</td>
<td>Width</td>
</tr>
<tr>
<td>5-53</td>
<td>Resolution Versus Sweep Bandwidth (Waveforms adapted from Catalog of Klauder Wavelets by Robert L. Geyer, Seismograph Services Corp.)</td>
</tr>
<tr>
<td>5-54</td>
<td>Frequency Versus Time for Various Sweep Types</td>
</tr>
<tr>
<td>5-55</td>
<td>Pilot Sweeps for $T^{0.3}$, Logarithmic, Linear, Exponential, and T^3</td>
</tr>
<tr>
<td>5-56</td>
<td>Vibrode Correlation Ghosts (courtesy WesternGeco)</td>
</tr>
<tr>
<td>5-57</td>
<td>Vibrode Correlation Ghost Examples (courtesy WesternGeco)</td>
</tr>
<tr>
<td>5-58</td>
<td>Effect of Surface Material</td>
</tr>
<tr>
<td>5-59</td>
<td>Effect of Taper on Pilot Autocorrelation</td>
</tr>
<tr>
<td>5-60</td>
<td>Attenuation of Sweep Distortion by Cross-Correlation</td>
</tr>
<tr>
<td>5-61</td>
<td>Piezoelectric Crystals</td>
</tr>
<tr>
<td>5-62</td>
<td>Hydrophone Equivalent Circuit</td>
</tr>
<tr>
<td>5-63</td>
<td>Input/Output Model 2522 Near-field Hydrophone</td>
</tr>
<tr>
<td>5-64</td>
<td>Hydrophone Ghosts</td>
</tr>
<tr>
<td>5-65</td>
<td>Amplitude Response for 12.5 m Group, 14 Phone Array</td>
</tr>
<tr>
<td>5-66</td>
<td>Geophone Components</td>
</tr>
<tr>
<td>5-67</td>
<td>Geophone Magnetic Field</td>
</tr>
<tr>
<td>5-68</td>
<td>Three-Component Geophones</td>
</tr>
<tr>
<td>5-69</td>
<td>Geophone Damping</td>
</tr>
<tr>
<td>5-70</td>
<td>Geophone Phase Response</td>
</tr>
<tr>
<td>5-71</td>
<td>Spurious Resonance or Parasitics (courtesy WesternGeco)</td>
</tr>
<tr>
<td>5-72</td>
<td>Geophone Tilt</td>
</tr>
<tr>
<td>5-73</td>
<td>Geophone Planting Conditions</td>
</tr>
<tr>
<td>5-74</td>
<td>Effect of Geophone Planting Conditions on Amplitude and Phase Responses</td>
</tr>
<tr>
<td>5-75</td>
<td>Noise Spread and Shooting Procedures</td>
</tr>
<tr>
<td>5-76</td>
<td>Noise Test Example (courtesy WesternGeco)</td>
</tr>
<tr>
<td>5-77</td>
<td>Attenuation of Ground Roll with Band-pass Filter (courtesy WesternGeco)</td>
</tr>
<tr>
<td>5-78</td>
<td>Noise Analysis or Walk Away (from Encyclopedia of Exploration Geophysics, R.E. Sheriff, 1991)</td>
</tr>
<tr>
<td>5-79</td>
<td>Array Configurations</td>
</tr>
<tr>
<td>5-80</td>
<td>Ideal Receiver Response for Space Domain x and Wave Number Domain K</td>
</tr>
<tr>
<td>5-81</td>
<td>Linear, Equally Spaced, Equally Weighted Array</td>
</tr>
<tr>
<td>5-82</td>
<td>Conventional Representation of Desired Response of Linear, Equally Weighted, Equally Spaced Array</td>
</tr>
<tr>
<td>5-83</td>
<td>Response of Linear, Equally Weighted, Equally Spaced Arrays, 6 Element and 12 Element</td>
</tr>
<tr>
<td>5-84</td>
<td>Alternative Methods of Representing the Spatial Response of Linear, Unequally Weighted, Equally Spaced Arrays</td>
</tr>
<tr>
<td>5-85</td>
<td>Decomposing Linear, Unequally Weighted, Equally Spaced Arrays</td>
</tr>
<tr>
<td>5-86</td>
<td>Linear Array with Variable Weights</td>
</tr>
<tr>
<td>5-87</td>
<td>Geophone Layouts in the Presence of Large Elevation Differences</td>
</tr>
<tr>
<td>5-88</td>
<td>Seismic Amplitudes</td>
</tr>
<tr>
<td>5-89</td>
<td>24-Bit Electronics</td>
</tr>
<tr>
<td>5-90</td>
<td>Streamer Configuration</td>
</tr>
<tr>
<td>5-91</td>
<td>Comparison between 16-Bit and 24-Bit Systems</td>
</tr>
<tr>
<td>5-92</td>
<td>Land Ground System Configuration</td>
</tr>
<tr>
<td>5-93</td>
<td>Recording Room on the Western Monarch (courtesy WesternGeco)</td>
</tr>
<tr>
<td>5-94</td>
<td>Non-Return-to-Zero Encoding</td>
</tr>
<tr>
<td>5-95</td>
<td>Tape Schematic</td>
</tr>
<tr>
<td>5-96</td>
<td>Multiplexed and De-multiplexed Data</td>
</tr>
<tr>
<td>5-97</td>
<td>Typical 2-D Geometry</td>
</tr>
<tr>
<td>5-98</td>
<td>Maximum and Minimum Offset Requirements</td>
</tr>
<tr>
<td>5-99</td>
<td>Maximum and Minimum Offset Requirements for Refracted Arrivals</td>
</tr>
</tbody>
</table>
Fig. 5–100 Off-End Spread
Fig. 5–101 Symmetric Split Spread
Fig. 5–102 Up-dip or Down-dip?
Fig. 5–103 Start-of-Line Procedures, Normal Shooting
Fig. 5–104 Start-of-Line Procedures, Fast Ramp On to Full Fold
Fig. 5–105 Obstacle Avoidance at the Source Array
Fig. 5–106 Recovery Shots
Fig. 5–107 Typical 3-D Geometry
Fig. 5–108 Migration Aperture from Dip for Constant Velocity (Straight Ray Paths)
Fig. 5–109 Migration Aperture from Dip for Constant Velocity (Straight Ray Paths) Using Geologic Depth
Fig. 5–110 Migration Aperture from Curved and Straight Ray Paths
Fig. 5–111 Migration Aperture from Fresnel Zone
Fig. 5–112 Distribution of Diffraction Energy (Diffraction energy distribution according to Claerbout)
Fig. 5–113 Determining Total Migration Aperture
Fig. 5–114 Total Survey Area Required to Correctly Image Target
Fig. 5–115 Bins or Cells
Fig. 5–116 Bin Shapes
Fig. 5–117 Subsurface Coverage in Marine Surveys
Fig. 5–118 Static Binning
Fig. 5–119 Overlapping or Wide Binning
Fig. 5–120 Effect of Multiple Streamers and Multiple Sources on Data Acquisition
Fig. 5–121 Conventional Straight Line or Racetrack Shooting
Fig. 5–122 Circle Shooting
Fig. 5–123 Approaches to Salt Dome Shooting
Fig. 5–124 Azimuthal Variation in Conventional One-boat Operation and Two-boat Undershoot Operations
Fig. 5–125 Obstacle Avoidance, One-boat Operation and Two-boat Undershoot
Fig. 5–126 Obstacle Avoidance with Two Boats
Fig. 5–127 Acquisition Template
Fig. 5–128 Swath Layout Method, Swath Shooting Method
Fig. 5–129 Shot Index
Fig. 5–130 Offset and Azimuth Variation in a Bin (after M. Galbraith, 3-D Survey Design by Computer, 1994)
Fig. 5–131 A Star Array and Its Polar Response (after M. Galbraith, 3-D Survey Design by Computer, 1994)
Fig. 5–132 Straight Line Method (after M. Galbraith, 3-D Survey Design by Computer, 1994)
Fig. 5–133 Another Type of Swath Shooting (after M. Galbraith, 3-D Survey Design by Computer, 1994)
Fig. 5–134 The Brick Pattern (after M. Galbraith, 3-D Survey Design by Computer, 1994)
Fig. 5–135 Odds and Evens (after M. Galbraith, 3-D Survey Design by Computer, 1994)
Fig. 5–136 The Zig-zag and Double Zig-zag Patterns (after M. Galbraith, 3-D Survey Design by Computer, 1994)
Fig. 5–137 The Non-orthogonal Pattern (after M. Galbraith, 3-D Survey Design by Computer, 1994)
Fig. 5–138 Bin Fractionation Method (after M. Galbraith, 3-D Survey Design by Computer, 1994)
Fig. 5–139 The Button Patch Method (after M. Galbraith, 3-D Survey Design by Computer, 1994)
Fig. 5–140 Recovery Shots with In-line Shift
Fig. 5–141 Recovery Shots with Cross-line Shifts
Fig. 5–142 (workshop)
Fig. 5–143 (workshop)
Fig. 5–144 (workshop)
Fig. 5–145 (workshop)
Fig. 5–146 (workshop)

Table 5–1 Surface-Based Navigation Systems
Table 5–2 Basic GPS Overview
Table 5–3 Airgun Specs and Array Parameters
Table 5–4 Correlation Ghost Start and Stop Times
Table 5–5 Selecting Geophone Parameter Values
Table 5–6 In-Water Systems Comparison
Table 5–7 Number Systems
Table 5–8 Pros And Cons Of Various Layout Strategies
(Source: M. Galbraith, 3-D Survey Design by Computer, 1994)

Fig. 6–1 Vertical Stack
Fig. 6-2 Straight Stack
Fig. 6-3 Diversity Stack Time Gates
Fig. 6-4 Average Power of Each Trace in Each Gate
Fig. 6-5 Scalers for Each Gate
Fig. 6-6 Diversity Stack Scaling Functions
Fig. 6-7 Application of Diversity Scalers
Fig. 6-8 Diversity Stack Output
Fig. 6-9 Stack Comparison
Fig. 6-10 Need for Scaler Normalization
Fig. 6-11 Zero- and Minimum-phase Correlation
Fig. 6-12 Uncorrelated and Correlated Vibroseis Shot Records
Fig. 6-13 Typical Processing Sequence
Fig. 6-14 Typical Processing Sequence (continued)
Fig. 6-15 Typical Processing Sequence (continued)
Fig. 6-16 LMO Traces Display (courtesy WesternGeco)
Fig. 6-17 OBC Receiver Location
Fig. 6-18 A Stacking Diagram
Fig. 6-19 Trace Gather
Fig. 6-20 Shot and CMP Traces with Geologic Dip
Fig. 6-21 Near-surface Model
Fig. 6-22 Effect of Variable Near Surface
Fig. 6-23 Static Corrections, Case I: Surface Source
Fig. 6-24 Static Corrections, Case IIa: Source in Weathering
Fig. 6-25 Static Corrections, Case IIb: Source in Subweathering
Fig. 6-26 First Breaks of Selected CMP Gatherers (courtesy WesternGeco)
Fig. 6-27 First Break Ray Paths and T-X Plot
Fig. 6-28 Refraction Ray Path Segments
Fig. 6-29 Redundancy of Data in Refraction Statics Determination
Fig. 6-30 Refraction Elevation Model
Fig. 6-31 Field Record with No Gain Applied
Fig. 6-32 Spherical Divergence and Spherical Spreading
Fig. 6-33 Geometric Spreading Correction Example (courtesy WesternGeco)
Fig. 6-34 Programmed Gain Control
Fig. 6-35 Ray Paths of OBC Ghosts
Fig. 6-36 OBC Primary Plus Ghosts
Fig. 6-37 Hydrophone Ghosting
Fig. 6-38 Hydrophone Ghost Impulse Response
Fig. 6-39 Geophone Ghosting
Fig. 6-40 Geophone Ghost Impulse Response
Fig. 6-41 A Plot of Scale Factor (1+R)/(1−R) for 360 Receiver Locations
Fig. 6-42 Transformation from T-X to F-K Domain
Fig. 6-43 Positive and Negative Cut Lines
Fig. 6-44 Filtering in the F-K Plane
Fig. 6-45 Transformation of Filtered Record from F-K to T-X Domain
Fig. 6-46 Noise Record in the T-X Domain and the F-K Domain (courtesy WesternGeco)
Fig. 6-47 Filtered Field Record in the F-K Domain and the T-X Domain (courtesy WesternGeco)
Fig. 6-48 Linear Moveout Applied to Linear Noise
Fig. 6-49 Field Record Dominated by Linear Noise (courtesy WesternGeco)
Fig. 6-50 Record of Figure 6-49 After Six Passes of Linear Noise Attenuation (courtesy WesternGeco)
Fig. 6-51 Instantaneous and Interval Velocities
Fig. 6-52 Single Horizontal Layer
Fig. 6-53 Reflection with Normal Moveout
Fig. 6-54 NMO Correction
Fig. 6-55 The NMO Correction Process
Fig. 6-56 The NMO Correction Process
Fig. 6-57 Effect of Velocity on NMO Correction
Fig. 6-58 NMO Stretch
Fig. 6–59 Input CMP Records, the Same Records after NMO Correction, and after NMO Mute (courtesy WesternGeco)
Fig. 6–60 Picked Versus Default Mutes (courtesy WesternGeco)
Fig. 6–61 RMS Velocity as the Replacement Velocity in the Multi-layer Situation
Fig. 6–62 NMO for Plane, Horizontal, and Iso-Velocity Layers
Fig. 6–63 Reflection from a Dipping Reflector
Fig. 6–64 A Dipping Reflector in 3-D
Fig. 6–65 Velocity Functions
Fig. 6–66 Velocity Analysis Location Used for Example
Fig. 6–67 The Velocity Sweep
Fig. 6–68 Semblance Plot
Fig. 6–69 Stack of CMPs Using the Nine Velocity Functions of Figure 6–68 (courtesy WesternGeco)
Fig. 6–70 CVS Display Used to Generate the Velocity Trend for the IVP Session (courtesy WesternGeco)
Fig. 6–71 Semblance Plot Generated from the Input Velocity Fan (courtesy WesternGeco)
Fig. 6–72 CMP 61 Corrected for NMO Using Velocity Function (courtesy WesternGeco)
Fig. 6–73 Semblance Plot with a Slower Velocity Picked for Event at 1729 ms (courtesy WesternGeco)
Fig. 6–74 Same as Figure 6–72 Except CMP 61 is Corrected for NMO Using the Modified Velocity Function (courtesy WesternGeco)
Fig. 6–75 Semblance Plot with a Faster Velocity Picked for Event at 1729 ms (courtesy WesternGeco)
Fig. 6–76 Same as Figure 6–72 Except CMP 61 is Corrected for NMO Using the Modified Velocity Function (courtesy WesternGeco)
Fig. 6–77 Observed Moveout versus NMO for a Flat Layered Earth
Fig. 6–78 Best Fit Hyperbola to Observed Moveout, NMO-corrected Traces Using Velocity Obtained from Best Fit Hyperbola
Fig. 6–79 Effect of Restricting Offsets on Velocity Analysis (courtesy WesternGeco)
Fig. 6–80 Earth Model with Near-Surface Anomaly
Fig. 6–81 Synthetic Traces Based on Model of Figure 6–80
Fig. 6–82 Variations in Stacking Velocity Caused by Near-Surface Anomaly
Fig. 6–83 Stack of Synthetic Traces Based on Model of Figure 6–80 and Velocities of Figure 6–82
Fig. 6–84 Velocity Analysis Before and After Multiple Attenuation
Fig. 6–85 Deconvolution Objectives
Fig. 6–86 Information in a Correlogram
Fig. 6–87 Whitening Deconvolution Representation in the Frequency Domain
Fig. 6–88 Effect of Adding White Noise to the Input Amplitude Spectrum
Fig. 6–89 Adding White Noise by Increasing Zero-lag Value of the Input Autocorrelation
Fig. 6–90 Input Autocorrelation and the Information It Contains
Fig. 6–91 Representation of Gapped Deconvolution Representation in the Frequency Domain
Fig. 6–92 Comparison of Whitening and Gapped Deconvolution
Fig. 6–93 Wavelet Shapes at Early, Middle, and Late Record Times
Fig. 6–94 Design and Application Gates for Time-Variant Deconvolution
Fig. 6–95 Effect of Filter Length on Deconvolution of Trace with Five Reflections (courtesy WesternGeco)
Fig. 6–96 Data Used to Illustrate TVD Parameter Testing (courtesy WesternGeco)
Fig. 6–97 Autocorrelation Window Selection
Fig. 6–98 Operator Length Tests
Fig. 6–99 Prediction Length Tests
Fig. 6–100 White Noise Tests
Fig. 6–101 Example of TVD
Fig. 6–102 Trace Decomposition
Fig. 6–103 Source and Receiver Amplitude Spectra Extracted from Trace Decomposition
Fig. 6–104 Only Geometric Spreading Applied and Same Record after Application of Surface Consistent Amplitude Correction (courtesy WesternGeco)
Fig. 6–105 TVSW Flow Chart
Fig. 6–106 Automatic Filter Design in TVSW
Fig. 6–107 User-Defined Filters for TVSW
Fig. 6–108 Three-Filter TVSW Example
Fig. 6–109 Filter Output, Gain Output
Fig. 6–110 Effect of Number of TVSW Filters on CMP Stack (courtesy WesternGeco)
Fig. 6–111 Effect of Number of TVSW Filters on Amplitude Spectra (courtesy WesternGeco)
Fig. 6–112 MBWP Models for Vibrator Records
Fig. 6–113 MBWP Models for Dynamite Records
Fig. 6–114 Absorption and Scattering
Fig. 6–115 Representative Q Values
Fig. 6–116 Evaluation of Q
Fig. 6–117 Transition Zone Example of MBWP Application
Fig. 6–118 Data of Figure 6–117 after MBWP (courtesy WesternGeco)
Fig. 6–119 Wavelets After Decon but Before MBWP and After Both Decon and MBWP
Fig. 6–120 Effects of Absorption
Fig. 6–121 Effect of Noise on Deconvolution
Fig. 6–122 The Forward Q-Filter and Deconvolution
Fig. 6–123 Phase Compensation
Fig. 6–124 Cascaded Amplitude Compensation
Fig. 6–125 Amplitude Compensation
Fig. 6–126 Inverse-Q Example
Fig. 6–127 Illustration of Residual Statics
Fig. 6–128 Residual NMO and Residual Statics
Fig. 6–129 Three CMPs with Residual Statics
Fig. 6–130 The Reflection Residual Statics Method
Fig. 6–131 Defining Windows for Residual Statics Analysis
Fig. 6–132 Definition of Quality Factors $Q_{j\ell\ell}$ and $\Delta_{j\ell\ell}$
Fig. 6–133 Surface Consistent Travel Time Model
Fig. 6–134 Decomposition of Residual Statics into Long, Medium, and Short Wavelength Statics
Fig. 6–135 Reflection-Based and Refraction-Based Residual Statics (courtesy WesternGeco)
Fig. 6–136 Increase in Dip of Multiples
Fig. 6–137 Change in Multiple Period with Offset
Fig. 6–138 Synthetic Example (courtesy WesternGeco)
Fig. 6–139 Autocorrelation of Data in Figure 6–138 (courtesy WesternGeco)
Fig. 6–140 Radon Transform of the Data in Figure 6–138
Fig. 6–141 Autocorrelation of Data in Figure 6–140 (courtesy WesternGeco)
Fig. 6–142 Data of Figure 6–140 after Gapped Deconvolution (courtesy WesternGeco)
Fig. 6–143 Autocorrelation of Data in Figure 6–142 (courtesy WesternGeco)
Fig. 6–144 Inverse Radon Transform of the Data in Figure 6–142 (courtesy WesternGeco)
Fig. 6–145 Reverberation Sampling by Receivers
Fig. 6–146 Modeling of Water Bottom Multiple Sequence from Previous Occurrence
Fig. 6–147 Approximating the Water Bottom by a Straight Line
Fig. 6–148 Model Used to Generate Synthetic Data (courtesy WesternGeco)
Fig. 6–149 Synthetic Data Produced from Model of Figure 6–148 by Ray Tracing (courtesy WesternGeco)
Fig. 6–150 The Data of Figure 6–149 after Forward Extrapolation of One Round Trip Through the Water Layer (courtesy WesternGeco)
Fig. 6–151 Reflectivity Operators Designed for Seven Different Gates of Data in Figure 6–149 (courtesy WesternGeco)
Fig. 6–152 Result of Subtracting Predicted Multiples from Data of Figure 6–149 (courtesy WesternGeco)
Fig. 6–153 A CMP Stack Showing Strong Multiples (courtesy WesternGeco)
Fig. 6–154 CMP Stack Section of Fig. 6–153 after Application of WEMA (courtesy WesternGeco)
Fig. 6–155 Source-Generated and Receiver-Generated Reverberations for Peg-Leg Multiples
Fig. 6–156 Input Record and Corrected Record for NMO Using Reverberation Velocity
Fig. 6–157 NMO-Corrected Record of Figure 6–156 and Record Transformed into F-K Domain
Fig. 6–158 F-K Record of Figure 6–157 After Velocity Filter Applied and Record Transformed into T-X Domain
Fig. 6–159 The T-X Domain Record of Figure 6–158 and Record After Inverse NMO Corrections
Fig. 6–160 Synthetic Data Used to Illustrate F-K Multiple Attenuation (courtesy WesternGeco)
Fig. 6–161 Multiple Attenuation from CMP Stack
Fig. 6–162 F-K Multiple Attenuation Using an Intermediate Velocity Function
Fig. 6–163 F-K Multiple Attenuation Example (courtesy WesternGeco)
Fig. 6–164 Synthetic Data Used to Illustrate Radon Transform Filtering (courtesy WesternGeco)
Fig. 6–165 Data of Figure 6–164 Transformed into t-p Domain
Fig. 6–166 Data of Figure 6–165 after Velocity Mutes Are Applied (courtesy WesternGeco)
Fig. 6–167 Inverse Radon transform of Data of Figure 6–166 (courtesy WesternGeco)
Fig. 6–168 Reflection from a Dipping Horizon
Fig. 6–169 Conflicting Dips
Fig. 6–170 Moveout from Conflicting Dips
Fig. 6–171 Conflicting Dips
Fig. 6–172 Zero-Offset Ray Paths for a Synclinal Reflector and Appearance on CMP Stack
Fig. 6–173 Conventional Processing (courtesy WesternGeco)
Fig. 6–174 Locus of Non-zero Reflection Points
Fig. 6–175 Pre-Stack Migration of a Spike Showing Input and Proper Migration
Fig. 6–176 Three-step Imaging
Fig. 6–177 Post-stack and Pre-stack Migration
Fig. 6–178 Kirchhoff Impulse Response (after S.M. Derevenski, First Break)
Fig. 6–179 DMO in the Common Offset Domain
Fig. 6–180 The DMO Process
Fig. 6–181 Depth Model of Six Point Scatterers Buried in a Constant Velocity
Fig. 6–182 DMO Example Using Synthetic Data Derived from Model of Figure 6–181 (courtesy WesternGeco)
Fig. 6–183 Zero-offset Section Associated with the Depth Model in Figure 6–181 (courtesy WesternGeco)
Fig. 6–184 DMO Processing Stages for Synthetic Data of Figure 6–181(courtesy WesternGeco)
Fig. 6–185 CMP Gather without DMO and with Kirchhoff DMO (courtesy WesternGeco)
Fig. 6–186 Velocity Analysis Displays with and without DMO
Fig. 6–187 Data Acquired Near a Major Fault, Conventional CMP Stack, and Post-stack Migration (courtesy WesternGeco)
Fig. 6–188 Velocity Analysis Displays Contoured in Correlation Coefficients
Fig. 6–189 Data of Figure 6–187 after DMO (courtesy WesternGeco)
Fig. 6–190 Data of Figure 6–187 After DMO, CMP Stack, Post-stack Migration, and Pre-stack Migration
Fig. 6–191 Effect of Event Alignment on CMP Stack
Fig. 6–192 Enlarged View of Time Scans Shown in Table 6–3 (courtesy WesternGeco)
Fig. 6–193 Two-Sum Median Stack (courtesy WesternGeco)
Fig. 6–194 Eight-Sum Median Stack (courtesy WesternGeco)
Fig. 6–195 Partial Stack to 12-fold Then Two-sum Median Stack
Fig. 6–196 Comparison of Conventional CMP Stack and Median Stack
Fig. 6–197 CMP Traces before NMO Correction and Stack—Flat Reflectors and CMP Traces before NMO Correction and Stack
Fig. 6–198 CMP Traces before NMO Correction and Stack—Dipping Reflectors and CMP Traces before NMO Correction and Stack
Fig. 6–199 Dipping Reflectors in True Position and as Seen on CMP Stack Section
Fig. 6–200 A Buried Focus or Syncline in Its True Perspective and a Bow Tie
Fig. 6–201 Anticlinal Reflector and Its Appearance on CMP Stack
Fig. 6–202 Geology and CMP Stack
Fig. 6–203 Dipping Reflectors as Seen on CMP Stack Section and After Migration
Fig. 6–204 Stack and Migration
Fig. 6–205 Imaging Hierarchy
Fig. 6–206 Circular Migration
Fig. 6–207 Hyperbolic Migration
Fig. 6–208 Distortion Caused by Refraction of Light
Fig. 6–209 Representation of a Point Aperture and the Diffraction Hyperbola Produced from It
Fig. 6–210 Set of Closely Spaced Point Apertures and Resultant of Diffraction Hyperbolas Produced from Them
Fig. 6–211 Summation of Amplitudes along the Hyperbola
Fig. 6–212 Downward Continuation
Fig. 6–213 Downward Continuation Migration with Depth Slices at Different Layers
Fig. 6–214 Fit of Parabola to Hyperbola—Low Order Explicit
Fig. 6–215 Fit of Parabola to Hyperbola—High Order Explicit
Fig. 6–216 Constant Velocity Stolt Migration Flow Chart
Fig. 6–217 Reduction of Bandwidth in Migration
Fig. 6–218 Stolt Migration Example—Multi-Dip Model (courtesy WesternGeco)
Fig. 6–219 Gazdag's Phase Shift Migration Flow Chart
Fig. 6–220 Comparison of Kirchhoff and Downward Continuation Migration Approaches
Fig. 6–221 Effect of Phase and Bandwidth on Migration of Diffraction (courtesy WesternGeco)
Fig. 6–222 Diffraction in T-X and F-K
Fig. 6–223 A Spike in the T-X and F-K Domains
Fig. 6–224 Data Wrap Around
Fig. 6–225 Preventing Wrap-around Effects
Fig. 6–226 Truncated Diffractions
Fig. 6–227 Migration Wave-fronting
Fig. 6–228 Migration of Multi-dip Model with 6 to 36 Hz Bandwidth (courtesy WesternGeco)
Fig. 6–229 Migration of Multi-dip Model with 6 to 90 Hz Bandwidth (courtesy WesternGeco)
Fig. 6–230 Effect of Spatial Sampling on Migration (courtesy WesternGeco)
Fig. 6–231 Spatial Aliasing and Migration—The Role of Interpolation (courtesy WesternGeco)
Fig. 6–232 Kirchhoff Impulse Response (courtesy WesternGeco)
Fig. 6–233 Chatter on the Limbs of the Kirchhoff Impulse Response (courtesy WesternGeco)
Fig. 6–234 Finite Difference Impulse Response (courtesy WesternGeco)
Fig. 6–235 Stolt Impulse Response When W = 1 and 0.5 (courtesy WesternGeco)
Fig. 6–236 Aperture Width Test, Multi-dip Model (courtesy WesternGeco)
Fig. 6–237 Aperture Width Test, Diffraction Migration (courtesy WesternGeco)
Fig. 6–238 Aperture Width Test, Field Data (courtesy WesternGeco)
Fig. 6–239 Aperture Width and Random Noise (courtesy WesternGeco)
Fig. 6–240 Maximum Dip Test, Multi-dip Model (courtesy WesternGeco)
Fig. 6–241 Maximum Dip Test, Field Data With Aperture Width of 384 Traces (courtesy WesternGeco)
Fig. 6–242 Effect of Velocity Errors on Kirchhoff Migration (courtesy WesternGeco)
Fig. 6–243 Depth Step Test, Implicit Finite Difference With a Sample Period of 4 ms (courtesy WesternGeco)
Fig. 6–244 The Zig-zag Effect (courtesy WesternGeco)
Fig. 6–245 Depth Step Test, Implicit Finite Difference Migration of Diffractions (courtesy WesternGeco)
Fig. 6–246 A CMP Stack Section and Sketch Highlighting Salient Features of the Stack (courtesy WesternGeco)
Fig. 6–247 Implicit Finite Difference Migration of the CMP Stack Section of Figure 6–246 Using a Depth Step of 40 ms and a Sketch Pointing Out Significant Aspects of the Migration (courtesy WesternGeco)
Fig. 6–248 Implicit Finite Difference Migration of the CMP Stack Section of Figure 6–246 Using A Depth Step Of 20 ms and a Sketch Pointing Out Significant Aspects of the Migration (courtesy WesternGeco)
Fig. 6–249 Comparison of Parabolic and Hyperbolic Time Shifts (courtesy WesternGeco)
Fig. 6–250 Velocity Test, Implicit Finite Difference Migration, Depth Step of 20 ms (courtesy WesternGeco)
Fig. 6–251 Comparison of Finite Difference Algorithms, Multi-dip Model (courtesy WesternGeco)
Fig. 6–252 Comparison of Finite Difference Algorithms, Three-point Aperture Model (courtesy WesternGeco)
Fig. 6–253 Parameter Test for Stretch Factor W in Stolt Migration (courtesy WesternGeco)
Fig. 6–254 Depth Step Test, Phase Shift Migration, Multi-dip Model (courtesy WesternGeco)
Fig. 6–255 Depth Step Test, Phase Shift Migration, Field Data (courtesy WesternGeco)
Fig. 6–256 Effect of Velocity Errors on Phase-Shift Migration (courtesy WesternGeco)
Fig. 6–257 Salt Model Used to Demonstrate Extended Stolt Migration (courtesy WesternGeco)
Fig. 6–258 Stolt Migration of Salt Model, Field Data W = 0.3, and Velocity Error (courtesy WesternGeco)
Fig. 6–259 Stolt Migration of Salt Model, Field Data W = 0.5, and Velocity Error (courtesy WesternGeco)
Fig. 6–260 Velocity Data Used to Develop Velocities for the Four-Stage Stolt Migration of Figure 6–259 (courtesy WesternGeco)
Fig. 6–261 Four-Stage Stolt Migration at W = 0.9 of Model and Field Data (courtesy WesternGeco)
Fig. 6–262 Phase-Shift Migration of Model and Field Data (courtesy WesternGeco)
Fig. 6–263 Point Scatterer Geometry (courtesy WesternGeco)
Fig. 6–264 Kirchhoff Pre-Stack Time Migration (courtesy WesternGeco)
Fig. 6–265 Conceptual View of Pre-stack Depth Migration (courtesy WesternGeco)
Fig. 6–266 Pre-Stack Depth Migration—Velocity and Focusing (courtesy WesternGeco)
Fig. 6–267 Up- and Down-going Waves (after Claerbout, 1985)
Fig. 6–268 Overthrust Model (courtesy WesternGeco)
Fig. 6–269 Synthetic Data from Overthrust Model Processed with Kirchhoff DMO, CMP Stack, and Steep-dip, Post-Stack Migration (courtesy WesternGeco)
Fig. 6–270 Pre-stack Depth Migration of Synthetic Data (courtesy WesternGeco)
Fig. 6–271 Shot-geophone Sinking Depth Migration Flow Chart (courtesy WesternGeco)
Fig. 6–272 Amplitude Spectrum of Migrated Trace (courtesy WesternGeco)
Fig. 6–273 Band-pass Filter Response and Corner Frequencies (courtesy WesternGeco)
Fig. 6–274 Filter Scan (courtesy WesternGeco)
Table 6–1 Variation of Δt_{NMO} with Time, Velocity, and Offset
Table 6–2 NMO Velocities
Table 6–3 Sorted Trace Amplitudes—Median and Average Values
Table 6–4 Post-stack Migration Summary
Table 6–5 Relative Processing Speeds of Migration Algorithm
Table 6–6 Pre-stack Time and Depth Migration Types
Table 6–7 Processes and Effects

Fig. 6–275 Filter Scan Interpretation
Fig. 6–276 Interpolation and Extrapolation of Band-pass Filter Application Times
Fig. 6–277 Time-to-depth Conversion
Fig. 6–278 Trace Display Modes
Fig. 6–279 Display Gain
Fig. 6–280 Variations in Horizontal Scale
Fig. 6–281 Variations in Vertical Scale
Fig. 6–282 Color Display Options (from AAPG Memoir 42)
Fig. 6–283 Line Orientations
Fig. 6–284 Migrated Cross-Line Profiles for Lines Designated by D in Figure 6–283
Fig. 6–285 Migrated In-Line Profiles for Lines Designated by D in Figure 6–283
Fig. 6–286 3-D Migrated Profile for Diagonal Line in Figure 6–283
Fig. 6–287 Constructing Structure Maps from Time Slices (AAPG Memoir 42)
Fig. 6–288 Time Slice Through a Salt Dome (AAPG Memoir 42)
Fig. 6–289 (workshop)
Fig. 6–290 (workshop)
Fig. 6–291 (workshop)
Fig. 6–292 (workshop)
Fig. 6–293 (workshop)
Fig. 6–294 (workshop)
Fig. 6–295 (workshop)
Fig. 6–296 (workshop)

Table 6–1 NMO Velocities
Table 6–2 NMO Velocities
Table 6–3 Sorted Trace Amplitudes—Median and Average Values
Table 6–4 Post-stack Migration Summary
Table 6–5 Relative Processing Speeds of Migration Algorithm
Table 6–6 Pre-stack Time and Depth Migration Types
Table 6–7 Processes and Effect

Fig. 7–1 Typical Exploration Sequence (after Morrison, Seismograph Services Corp.)
Fig. 7–2 Focusing in Anticlines and Synclines (courtesy WesternGeco)
Fig. 7–3 Bow Tie Effect of Buried Focus
Fig. 7–4 The Zero-offset Stack Shows the Focusing of the Narrow, Deep-seated Syncline, and the Migrated Stack Shows the Bow Tie Untied (courtesy WesternGeco)
Fig. 7–5 Shadow Zones (courtesy Seismograph Service Corp.)
Fig. 7–6 Zero-offset Section of Horst Block (courtesy Seismograph Service Corp.)
Fig. 7–7 Normal Incidence Ray Path Model of Horst Block
Fig. 7–8 Thin Bed Response
Fig. 7–9 Distortion in The Seismic Data Because Of Lateral Near Surface Velocity Variation (courtesy Seismograph Service Corp.)
Fig. 7–10 Distortion in the Deep Structure because of False Turnover Against the Fault Plane (courtesy Seismograph Service Corp.)
Fig. 7–11 Velocity Pull-up (courtesy Seismograph Service Corp.)
Fig. 7–12 Subsurface Section—Basinward Thinning (courtesy Seismograph Service Corp.)
Fig. 7–13 Seismic Model—Basinward Thinning (courtesy Seismograph Service Corp.)
Fig. 7–14 Subsurface Pseudo Fault Model (courtesy Seismograph Service Corp.)
Fig. 7–15 Ray Tracing For the Subsurface Model of Figure 7–14 (courtesy Seismograph Service Corp.)
Fig. 7–16 Seismic Model For the Pseudo Fault (courtesy Seismograph Service Corp.)
Fig. 7–17 Over-Pressure Shale Model (courtesy Seismograph Service Corp.)
Fig. 7–18 Seismic Model of Over-pressed Shale (courtesy Seismograph Service Corp.)
Fig. 7–19 Interval Transit Time Log (courtesy Seismograph Service Corp.)
Fig. 7–20 Primary Reflection Synthetic without Modeling (courtesy Seismograph Service Corp.)
Fig. 7–21 Primary Reflection Synthetic With Velocity Modified Between 8700 and 9550 ft (courtesy Seismograph Service Corp.)
Fig. 7–22 Primary Reflection Synthetic With Depth Modification at 8700 ft Bed Thickness Reduced from 430 to 312 ft (courtesy Seismograph Service Corp.)
Fig. 7–23 Primary Reflection Synthetic With Repeat Section to Simulate Thrust Faulting (courtesy Seismograph Service Corp.)
<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-24</td>
<td>Model Cross-section Showing Interval Velocity Versus Time</td>
<td>(courtesy Seismograph Service Corp.)</td>
</tr>
<tr>
<td>7-25</td>
<td>Model Cross-section of Primary Reflection</td>
<td>(courtesy Seismograph Service Corp.)</td>
</tr>
<tr>
<td>7-26</td>
<td>Subsurface Depth Model</td>
<td>(courtesy Seismograph Service Corp.)</td>
</tr>
<tr>
<td>7-27</td>
<td>Ray Tracing of the Model</td>
<td>(courtesy Seismograph Service Corp.)</td>
</tr>
<tr>
<td>7-28</td>
<td>Spike Seismogram and Wavelet Seismogram from the Model</td>
<td>(courtesy Seismograph Service Corp.)</td>
</tr>
<tr>
<td>7-29</td>
<td>Random Noise Added to the Wavelet Seismogram</td>
<td>(courtesy Seismograph Service Corp.)</td>
</tr>
<tr>
<td>7-30</td>
<td>The Seismic Trace</td>
<td>(courtesy Seismograph Service Corp.)</td>
</tr>
<tr>
<td>7-31</td>
<td>Direct Measurement of Seismic Waveform</td>
<td>(after Neidell, courtesy SEG)</td>
</tr>
<tr>
<td>7-32</td>
<td>Deterministic Measurement Of Seismic Waveform</td>
<td>(after Neidell, courtesy SEG)</td>
</tr>
<tr>
<td>7-33</td>
<td>Statistical Estimation Of Wavelet</td>
<td>(after Stone, courtesy Seismograph Service Corp.)</td>
</tr>
<tr>
<td>7-34</td>
<td>Statistical Method of Wavelet Processing With 12 Traces</td>
<td>(after Stone, courtesy Seismograph Service Corp.)</td>
</tr>
<tr>
<td>7-35</td>
<td>Statistical Method of Wavelet Processing</td>
<td>(after Stone, courtesy Seismograph Service Corp.)</td>
</tr>
<tr>
<td>7-36</td>
<td>Estimated Reflection Coefficients</td>
<td>(after Stone, courtesy Seismograph Service Corp.)</td>
</tr>
<tr>
<td>7-37</td>
<td>Sequence Of Wavelet Processing Technique</td>
<td>(courtesy Seismograph Service Corp.)</td>
</tr>
<tr>
<td>7-38</td>
<td>Enhanced Interpretation from Wavelet Processing</td>
<td>(courtesy Seismograph Service Corp.)</td>
</tr>
<tr>
<td>7-39</td>
<td>Wavelet Processing and Better Interpretation</td>
<td>(after Stone, courtesy Seismograph Service Corp.)</td>
</tr>
<tr>
<td>7-40</td>
<td>Reflection Estimates</td>
<td>(after Stone, courtesy Seismograph Service Corp.)</td>
</tr>
<tr>
<td>7-41</td>
<td>Synthetic Seismograms and Wavelet Processing</td>
<td>(courtesy Seismograph Service Corp.)</td>
</tr>
<tr>
<td>7-42</td>
<td>Fault Detection from Estimated Reflection Coefficient</td>
<td>(courtesy Seismograph Service Corp.)</td>
</tr>
<tr>
<td>7-43</td>
<td>Stratigraphic Application: Reef Showing (a) Final Stacked Section</td>
<td>(courtesy Seismograph Service Corp.)</td>
</tr>
<tr>
<td></td>
<td>(b) Estimated Reflection Coefficient, (c) Wavelet Processed Stack, and (d)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interval Velocity Log</td>
<td></td>
</tr>
<tr>
<td>7-44</td>
<td>Stratigraphic Application Using Wavelet Processing</td>
<td>(after Stone, 1982)</td>
</tr>
<tr>
<td>7-45</td>
<td>Interval Velocities on the Reef Example</td>
<td>(after Stone, 1982)</td>
</tr>
<tr>
<td>7-46</td>
<td>Seismic Section from the Baltimore Canyon Trough</td>
<td>(courtesy Western Geoc)</td>
</tr>
<tr>
<td>7-47</td>
<td>Stratigraphic Cross-section from Well Log Data Showing Stratigraphic Section</td>
<td>(after Vail et al, AAPG, 1977)</td>
</tr>
<tr>
<td>7-48</td>
<td>Seismic Velocity for Tertiary Example</td>
<td>(after Vail et al, AAPG, 1977)</td>
</tr>
<tr>
<td>7-49</td>
<td>Seismic Reflections at Stratigraphic Surfaces with a Change in the Acoustic</td>
<td>(after Schraun, AAPG, 1977)</td>
</tr>
<tr>
<td></td>
<td>Impedance</td>
<td></td>
</tr>
<tr>
<td>7-50</td>
<td>Discontinuity Surfaces Caused by Erosion and Depositional Hiatus Unconformities</td>
<td></td>
</tr>
<tr>
<td>7-51</td>
<td>Terminology Proposed for Reflection Terminations</td>
<td>(after Mitchum et al, AAPG, 1977)</td>
</tr>
<tr>
<td>7-52</td>
<td>Seismic Reflection Parameters used in Seismic Stratigraphy and Their Geologic</td>
<td>(after Mitchum et al, AAPG, 1977)</td>
</tr>
<tr>
<td></td>
<td>Significance</td>
<td></td>
</tr>
<tr>
<td>7-53</td>
<td>Parallel, Subparallel, and Divergent Seismic Reflection Configuration</td>
<td>(after Mitchum et al, AAPG, 1977)</td>
</tr>
<tr>
<td>7-54</td>
<td>Stratified Simple and Complex Facies</td>
<td>(after Mitchum et al, AAPG, 1977)</td>
</tr>
<tr>
<td>7-55</td>
<td>Fill Facies Units</td>
<td>(after Mitchum et al, AAPG, 1977)</td>
</tr>
<tr>
<td>7-56</td>
<td>Seismic Facies of Carbonate</td>
<td>(after Mitchum et al, AAPG, 1977)</td>
</tr>
<tr>
<td>7-57</td>
<td>Modified Seismic Reflections</td>
<td>(after Mitchum et al, AAPG, 1977)</td>
</tr>
<tr>
<td>7-58</td>
<td>External Geometry of Some Facies Units</td>
<td>(after Mitchum et al, AAPG, 1977)</td>
</tr>
<tr>
<td>7-59</td>
<td>Geologic Interpretation of Seismic Facies Parameters</td>
<td>(after Mitchum et al, AAPG, 1977)</td>
</tr>
<tr>
<td>7-60</td>
<td>Stratigraphic Terminations at Upper Boundary</td>
<td>(after Mitchum et al, AAPG, 1977)</td>
</tr>
<tr>
<td>7-61</td>
<td>Generalized Stratigraphic Section on a Sequence and Generalized Chronostratigraphic Section</td>
<td>(after Mitchum et al, AAPG, 1977)</td>
</tr>
<tr>
<td>7-62</td>
<td>Coastal On-lap as a Function of Eustatic Level Change, Subsidence, and Sediment Supply</td>
<td>(after Vail, Mitchum, Thompson, AAPG, 1977)</td>
</tr>
<tr>
<td>7-63</td>
<td>Three Scenarios during Coastal On-lap</td>
<td>(after Vail, Mitchum, Thompson, AAPG, 1977)</td>
</tr>
<tr>
<td>7-64</td>
<td>Coastal On-lap Indicates a Relative Still Stand of Sea Level</td>
<td>(after Vail, Mitchum, Thompson, AAPG, 1977)</td>
</tr>
<tr>
<td>7-65</td>
<td>Downward Shift in Coastal On-lap</td>
<td>(after Vail, Mitchum, Thompson, AAPG, 1977)</td>
</tr>
<tr>
<td>7-66</td>
<td>Method for Calculating the Amount of Coastal On-lap and Downward Shift</td>
<td>as a Measurement of Relative Fall of Sea Level (after Vail, Mitchum, Thompson, AAPG, 1977)</td>
</tr>
<tr>
<td>7-67</td>
<td>Continental Margin Clinoform Analysis</td>
<td>(after Vail, Mitchum, Thompson, AAPG, 1977)</td>
</tr>
<tr>
<td>7-68</td>
<td>Downward Shift in Coastal On-lap in San Joaquin, California</td>
<td>(after Vail, Mitchum, Thompson, AAPG, 1977)</td>
</tr>
<tr>
<td>7-69</td>
<td>Progradational and Marine On-lap Cycles, Tertiary North Sea</td>
<td>(after Vail, Mitchum, Thompson, AAPG, 1977)</td>
</tr>
</tbody>
</table>
Fig. 7–71 Relative Changes in Sea Level, Concepts of Paracycles, Cycles, and Super Cycles
(after Vail, Mitchum, Thompson, AAPG, 1977)

Fig. 7–72 Correlation of Regional Cycles of Relative Sea-level Change and
Averaging to Construct Global Cycles
(after Vail, Mitchum, Thompson, AAPG, 1977)

Fig. 7–73 Estimation of Eustatic Change from Jurassic to Holocene
(after Vail, Mitchum, Thompson, AAPG, 1977)

Fig. 7–74 First- and Second-order Global Cycles of Relative Sea-Level Change
(after Vail, Mitchum, Thompson, AAPG, 1977)

Fig. 7–75 Global Cycle of Sea-level Changes, Jurassic to Tertiary
(after Vail, Mitchum, Thompson, AAPG, 1977)

Fig. 7–76 Control of Sedimentation and Depositional System
(after Bally, 1987)

Fig. 7–77 Reflection Terminations Patterns and Types of Discontinuity
(after Posamentier et al, SEPM, 1988)

Fig. 7–78 Reflection Termination Patterns Types of Discontinuities That Define Cyclic Sequences
(after Posamentier et al, SEPM, 1988)

Fig. 7–79 Accommodation Envelope as a Function of Eustacy and Subsidence
(after Posamentier et al, SEPM, 1988)

Fig. 7–80 Eustacy, Relative Sea Level, Water Depth as a Function of Sea Surface.
Water Bottom and Datum Position
(after Posamentier et al, SEPM, 1988)

Fig. 7–81 Accommodation as a Function of Eustacy and Subsidence
(after Posamentier et al, SEPM, 1988)

Fig. 7–82 Relative Sea Level as a Function of Eustacy and Subsidence
(after Posamentier et al, SEPM, 1988)

Fig. 7–83 Response of Relative Sea Level to Differential Tectonic Thermal Subsidence
(after Posamentier et al, SEPM, 1988)

Fig. 7–84 Effect of Relative Sea Level Rise on Coastline Position
(after Posamentier et al, SEPM, 1988)

Fig. 7–85 Type 1 Unconformity
(after Posamentier and Vail, SEPM, 1988)

Fig. 7–86 Response of Sedimentation on an Interval of Rapid Eustatic Fall
(after Posamentier et al, SEPM, 1988)

Fig. 7–87 Distribution Of Low-stand Wedge Deposits Along The Outer Shelf/Upper Slope
(after Posamentier et al, SEPM, 1988)

Fig. 7–88 New Space Added During an Interval of Constant Rate of Relative Sea Level Rise
Following Type 1 Unconformity
(after Posamentier et al, SEPM, 1988)

Fig. 7–89 Baseline Position and Low-stand Deposits During Rapid Short- and Long-period Eustatic Fall
(after Posamentier et al, SEPM, 1988)

Fig. 7–90 Elements of Coastal Onlap Curve
(after Posamentier et al, SEPM, 1988)

Fig. 7–91 Type 2 Unconformity
(after Posamentier et al, SEPM, 1988)

Fig. 7–92 Effect of Equilibrium Point Migration on Fluvial Deposition in Prograding Environment
(after Posamentier et al, SEPM, 1988)

Fig. 7–93 Effect of Shifting Equilibrium Point on Fluvial Deposition
(after Posamentier et al, SEPM, 1988)

Fig. 7–94 Response of the Topset Bed Thickness to Eustatic Fall
(after Posamentier et al, SEPM, 1988)

Fig. 7–95 Relationship Between Eustatic Sea Level and Phases of Erosion and System Track Deposition
(after Posamentier et al, SEPM, 1988)

Fig. 7–96 Types Of Parasequence Sets
(after Van Wagoner et al, SEPM, 1988)

Fig. 7–97 Recognizing and Dating Unconformities
(after Vail et al, AAPG, 1984)

Fig. 7–98 Unconformity Types
(after Vail et al, AAPG, 1984)

Fig. 7–99 Type 1 Erosion
(after Vail et al, AAPG, 1984)

Fig. 7–100 Relation between Transgression or Regression and Eustatic Sea Level
(after Vail, Mitchum, Thompson, AAPG, 1977)

Fig. 7–101 A Deposition Sequence in Depth and Time and Its Relation to Marine Condensed Section,
Coastal Onlap, Shoreline, and Eustatic Sea Level (Jersey, AAPG, 1977)

Fig. 7–102 Relationship of Sequence to Relative Changes of Coastal Onlap,
Types and Ages of Unconformities, Condensed Intervals/Ages,
and Inferred Eustatic Sea-Level Changes
(after Vail, AAPG, 1984)

Fig. 7–103 Estimation of Worldwide Hydrocarbon Reserve in Clastic Depositional Sequences

Fig. 7–104 Diagrammatic Seismic Section Showing Common Stratal Geometries and Terminations
(after Vail, AAPG, 1984)

Fig. 7–105 Seismic Section Showing System Tracts and Other Elements of Depositional Sequences
(after Vail, Mitchum, Thompson, AAPG, 1977)
Fig. 7–106 An Idealized Siliciclastic Depositional Sequence Showing Depositional System Tracts and Their Bounding Surface (after Haq et al, SEPM, 1988)

Fig. 7–107 Schematic Diagram of Carbonate Lithofacies Distribution in a Sequence (after Sarg et al, SEPM, 1987)

Fig. 7–108 Carbonate Facies Belts With Representative Textural Types (after Sarg, SEPM, 1988)

Fig. 7–109 Diagrammatic Mixed Carbonate and Clastic Sequence Showing Lithologies and Sequence-Stratigraphic Elements (after Vail et al, AAPG, 1987)

Fig. 7–110 Highstand Systems Tract (after Posamentier et al, SEPM, 1988)

Fig. 7–111 Carbonate Highstand Deposition (after Sarg, SEPM, 1988)

Fig. 7–112 Low-stem System Tract Basin Floor Fan and Siliciclastic Low-stem Systems Tract During Basin Floor Fan Deposition (Posamentier et al, SEPM, 1988)

Fig. 7–113 Low-stem Systems Tract Slope Fan and Siliciclastic Low-stem Systems Tract During Slope Fan Deposition (after Vail and Sangree, AAPG, 1987)

Fig. 7–114 Low-stem Systems Tract Prograding Wedge and Siliciclastic Low-stem Systems Tract During Prograding Wedge Deposition (Posamentier et al, SEPM, 1988)

Fig. 7–115 Different Settings for Low-stem Tract Deposition (after Vail et al, AAPG, 1987)

Fig. 7–116 Type 1 Carbonate and Carbonate Early Lowstand Systems Tract (after Sarg, SEPM, 1988)

Fig. 7–117 Transgressive Systems Tract and Siliciclastic Transgressive System Tracts (after Sarg, SEPM, 1988)

Fig. 7–118 Carbonate Late Low-stem and Transgressive System Tracts (after Sarg, SEPM, 1988)

Fig. 7–119 Sediments Accommodations Potential and Its Relationship to the Marine Condensed Sediments (after Loutit et al, SEPM, 1988)

Fig. 7–120 The Stratigraphic Relationship of Marine Condensed Sections to Others Depositional Systems Tracts (after Loutit et al, SEPM, 1988)

Fig. 7–121 Marine Condensed Sections and Their Relationship with the Stratigraphic Succession (after Loutit et al, SEPM, 1988)

Fig. 7–122 Depth and Time Sections Showing the Marine Condensed Sections Within the Sequence Frame Work (after Loutit et al, SEPM, 1988)

Fig. 7–123 Siliciclastic Lithofacies and Siliciclastic Shelf-margin Systems Tract (Posamentier et al, SEPM, 1988)

Fig. 7–124 Type 2 Carbonate Sequence Diagram Showing a Slow Fall of the Sea Level Interpreted as a Type 2 Sequence (after Sarg, SEPM, 1988)

Fig. 7–125 Sequence Stratigraphy Depositional Model Showing Carbonate and Evaporite Lithofacies, Distribution of Carbonate and Evaporite Lithofacies Within the Deposition Sequence Framework (after Sarg, SEPM, 1988)

Fig. 7–126 Stratigraphic Pattern in Type 1 Sequence—Stratal Pattern in Type 1 Sequence Deposited in the Basin With Shelf Break (after J. C. Van Wagoner et al, SEPM, 1988)

Fig. 7–127 Stratigraphic Pattern in Type 1 Sequence Deposited in a Basin with Ramp Margin (after J. C. Van Wagoner et al, SEPM, 1988)

Fig. 7–128 Type 2 Sequence Boundary (after J. C. Van Wagoner et al, SEPM, 1988)

Fig. 7–129 Possible Reservoir Quality Sand in Siliciclastic Sequence (after Vail et al, AAPG, 1987)

Fig. 7–130 Summary of Factors Affecting the Hydrocarbon-play Potential of Siliciclastic Deposition Systems Tracts (after Sangree and Vail, AAPG, 1989)

Fig. 7–131 Summary of Factor Affecting the Hydrocarbon-play Potential of Siliciclastic Deposition Systems Tracts (after Vail et al, AAPG, 1987)

Fig. 7–132 Systems Tracts in the Gulf Coast Basin (after Sangree and Vail, AAPG, 1989)

Fig. 7–133 Systems Tracts Within Depositional Sequences Deposited Basinward (after Posamentier et al, SEPM, 1988)

Fig. 7–134 Triassic Chronostratigraphic and Eustatic-cycle Chart (after Haq et al, AAPG, 1989)

Fig. 7–135 Jurassic Chronostratigraphic and Eustatic-cycle Chart (after Haq et al, AAPG, 1989)

Fig. 7–136 Cretaceous Chronostratigraphic and Eustatic-cycle Chart (after Haq et al, AAPG, 1989)

Fig. 7–137 Cenozoic Chronostratigraphic and Eustatic-cycle Chart (after Haq et al, AAPG, 1989)

Fig. 7–138 High-resolution Seismic Recording Using Vibroseis (courtesy AAPG)

Fig. 7–139 High-resolution Seismic Section (courtesy Seismograph Service Corp.)

Fig. 7–140 High-frequency Marine Seismic Section (courtesy AAPG)

Fig. 7–141 Vertical Seismic Profiling Concepts

Fig. 7–142 Upgoing and Downgoing Events

Fig. 7–143 Raw, Upgoing and Downgoing Events (courtesy Seismograph Service Corp.)

Fig. 7–144 Identification of Seismic Reflectors (modified from Black et al, 1981)
Fig. 7–145 Separation of Up- and Downgoing Events in F-K Space

Fig. 7–146 Comparison of VSP with Synthetic Seismogram (after Hardage, 1983)

Fig. 7–147 Predicting Interval Velocity Ahead of the Bit (after Hardage, 1983)

Fig. 7–148 Predicting Depth of a Seismic Reflector (after Hardage, 1983)

Fig. 7–149 Looking Ahead of the Bit (after Hardage, 1983)

Fig. 7–150 Increase in Angle of Incidence With Offset

Fig. 7–151 AVO Classes (courtesy WesternGeco)

Fig. 7–152 Angle Gathers (courtesy WesternGeco)

Fig. 7–153 Two-term AVO Inversion (courtesy WesternGeco)

Fig. 7–154 Portion of a CMP Stack Section Showing a Bright Spot, P-wave Intercept Section, Pseudo S-wave Section, and Poisson's Ratio Section (courtesy Seismograph Service Corp.)

Fig. 7–155 Orientation of P- and S-wave Particle Motion

Fig. 7–156 Mode Conversion of Ray Paths

Fig. 7–157 Schematic Representation of Three-Component Records

Fig. 7–158 F-K Domain Representation of Vertical Component Record in Figure 7–157

Fig. 7–159 Vertical Component Record of Figure 7–157 after NMO Corrections Using S-wave Velocities

Fig. 7–160 Vertical Component Record of Figure 7–157

Fig. 7–161 The Near Surface as Seen by P- and S-waves

Fig. 7–162 Comparison of P-P and P-SV Ray Paths

Fig. 7–163 Ray Paths of CRP Traces for P-SV

Fig. 7–164 Representative P-P, P-SV, and SH-SH Traces

Fig. 7–165 Traces of Figure 7–164 after Time Scaling to Enhance Event Correlation

Fig. 7–166 Shear-wave and P-wave Sections (courtesy CGG)

Fig. 7–167 Unpaired Reflections (adapted from K.H. Waters, 1987)

Fig. 7–168 Rock Velocities Versus Lithology from Well Logs (after Castagna et al, SEG, 1984)

Fig. 7–169 Rock Velocity Versus Lithology from Laboratory Examples (after Castagna et al, SEG, 1984)

Fig. 7–170 Flowchart for a 4-D Project

Fig. 7–171 Wedge Model with Gas Cap (from Huang et al, 2001)

Fig. 7–172 Relationships among Reservoir Thickness, Gas Saturation, and Amplitude Change (from Huang et al, 2001)

Fig. 7–173 Raw Difference after Applying Global Equalization with a Single Scaler (from Huang et al, 2001)

Fig. 7–174 Difference after Global Phase and Amplitude Match (from Huang et al, 2001)

Fig. 7–175 Difference after Time- and Space-variant Cross-equalization (from Huang et al, 2001)

Fig. 7–176 Difference along the Reservoir Horizon after Global Equalization (from Huang et al, 2001)

Fig. 7–177 Difference along the Reservoir Horizon after Local Equalization (from Huang et al, 2001)

Fig. 7–178 Seismic Difference after Matching with Cumulative Production (from Huang et al, 2001)

Fig. 7–179 Residual Gas Saturation Map after Material Balance Matching and Calibration (from Huang et al, 2001)

Fig. 7–180 Perspective View of the Sand Structure Containing the Currently Producing 4500 ft Reservoir (from Pennington et al, 2001)

Fig. 7–181 Smoothed Production History of the 4500 ft Reservoir (from Pennington et al, 2001)

Fig. 7–182 Inverted Legacy Data Volume Showing Acoustic Impedance 12 ms below the Top of the Tracked 4500 ft Horizon (from Pennington et al, 2001)

Fig. 7–183 Time-Lapse Difference Mapped on the 4500 ft Reservoir (from Pennington et al, 2001)

Fig. 7–184 Changes in P-wave velocity, Poisson's Ratio, and Acoustic Impedance with Time of Production (provided by Wayne D. Pennington and Horacio Acevedo)

Fig. 7–185 Amplitudes Extracted from Partial-offset Stacked P-wave Data for the 4500 ft Reservoir from Phases I and II (from Pennington et al, 2001)

Fig. 7–186 Amplitudes Extracted from Partial-offset Stacked P-wave Data for the Little Neighbor Reservoir from Phases I and II (from Pennington et al, 2001)

Fig. 7–187 Amplitudes extracted from Partial-offset (Unmigrated) Stacked P-wave Data for the Little Neighbor Reservoir from Phases I and II (from Pennington et al, 2001)

Table 7–1 2-D Models

Table 7–2 P-P and P-SV CRP Trace Attribute Comparisons

Table 7–3 Acoustic Impedance Change Caused by Gas Saturation Change
Overview and Summary

Introduction

Until 1859, petroleum exploration was a rather simple and straightforward procedure. One simply looked for oil seepage at the surface—particularly near streams and from oil springs. Petroleum was used principally for medicinal purposes at that time, so the approach yielded a sufficient supply to meet demands.

In 1859, Colonel E. L. Drake completed the first successful well, drilled specifically for oil (although wells drilled earlier for other purposes had yielded oil). Actually, Drake used the early method of petroleum exploration since his well was located near a known oil seep along Oil Creek in western Pennsylvania. Soon, there were many wells being drilled up and down Oil Creek.

These early successes led to an exploration method often called creekology in which accumulations of oil were associated with low spots along and near streams. Hills and plateaus were not considered suitable drilling sites.

Trendology was another early exploration method arising from the observation that oil pools and fields frequently occurred along almost straight lines for many miles. In other words, after early discovery of two or more fields, lines connecting these were extended in both directions and wells located along the line. Actually, this is a relatively sound procedure, which is still used under certain conditions. Locating wells near oil seeps is also a good method.
Intergranular porosity can result from original spaces between grains at the time of deposition remaining after lithification or from fractures after lithification. Solution cavities in limestones can produce interconnected pores or voids that allow fluid flow through the reservoir rock. Table 2–4 lists classifications of rock porosity and Table 2–5 gives classifications of permeability.

Table 2–4 Reservoir Rock Porosity

<table>
<thead>
<tr>
<th>Ranges of Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 5%</td>
<td>Negligible</td>
</tr>
<tr>
<td>5 to 10%</td>
<td>Poor</td>
</tr>
<tr>
<td>10 to 15%</td>
<td>Fair</td>
</tr>
<tr>
<td>15 to 20%</td>
<td>Good</td>
</tr>
<tr>
<td>20 to 25%</td>
<td>Very Good</td>
</tr>
<tr>
<td>greater than 25%</td>
<td>Excellent</td>
</tr>
</tbody>
</table>

Reservoir rock porosity is either primary, with the remainder of the original spaces between sand grains and particles or fossil pieces, or secondary, meaning it was formed after deposition and burial. Secondary porosity results from solution in fossil molds (or vugs) and from fractures, such as between crystals in limestone and dolomite. Porosity may be measured by visual examination of well cuttings taken from core samples, a standard laboratory procedure, or from wire-line well logs.

In deep reservoirs, as cementation and compaction increase, porosity and permeability decrease. Gas reservoirs occur at greater depths but require less porosity and permeability to be productive.

Reservoir rock permeability indicates how easily fluids can flow through a rock and thus, depends on interconnection of the pores. Permeability is measured using a perm plug, a cylindrical piece of rock drilled from a core. Tight sands and limestone have permeabilities of less than 5 md.

Source rocks are sedimentary rocks in which organic matter is preserved. Black sediments have high organic content. Coals are preserved woody material. Black shales have 1 to 5% organic matter. They are the most common source rock.

Generation, migration, and accumulation of petroleum. Methane (swamp gas) is generated at shallow depths via biogenic or bacterial activity. However, this methane is generated at too shallow a depth for large quantities to be trapped. (Some efforts are being made to capture such gas produced at municipal landfills.) Bacterial action decreases with increasing depth and temperature.

Crude oil is generated very slowly, taking millions of years at temperatures of from 120°F to 350°F. Heavy oils with low API gravity are generated at the lower temperatures in this range. (Heavy oil may be biodegraded lighter oil.) Light oils are generated at the higher temperatures in the range. Thermal gas is generated at temperatures above 350°F. At these temperatures crude oil breaks down into graphite (C) and gas.

Organic matter and coal generate gas. Wet gas with associated condensate is generated at shallower depths. Dry gas with no liquids is generated at deeper depths.

The oil window (Fig. 2–40) is the subsurface region of oil generation. The temperature range of 120°F to 350°F corresponds to a depth range of about 5000 ft (1524 m) to 21,000 ft (6400 m). Heavy oil is generated at the top of the oil window and light oil at the bottom. Similarly, wet gas is generated just below the oil window and dry gas at deeper depths.

The reason for the differences in type of petroleum generated at different depths and temperature ranges becomes clear when the nature of heat is investigated. Heat is actually molecular motion. The higher the temperature, the faster the molecules move. The larger the hydrocarbon molecule, the less stable it is at high temperatures. Thus temperature establishes a ceiling on molecular size.
In most cases, the ability to correctly reconstruct a digital signal depends upon the frequency content of the signal and the sampling increment.

Figure 3–26 shows the effect of sampling at different sample increments or sample periods. In Figure 3–26a, the input is a 25-Hz sinusoid. The reconstructions of the outputs sampled at 2 ms, 4 ms, and 8 ms are the same as the input. In Figure 3–26b, the input is a 75-Hz sinusoid. The reconstructions of the outputs sampled at 2 ms and 4 ms are the same as the input, but the output sampled at 8 ms is a 25-Hz sinusoid! In Figure 3–26c the input is a 150-Hz sinusoid. The reconstruction of the output sampled at 2 ms is the same as the input, but the 4 ms output is a 100-Hz sinusoid and the 8 ms output is a 25-Hz sinusoid!

In Figure 3–26d, the input is the sum of 12.5-Hz and 75-Hz sinusoids but the reconstructed output is the sum of 12.5 and 25-Hz sinusoids. What is being demonstrated here is the phenomenon called aliasing.

The Sampling Theorem can be stated as follows:

An analog signal which is band-limited to frequencies less than f_0 is completely described by samples taken at intervals of time $1/2f_0$, where $\Delta t < 1/2f_0$. Conversely, then, an analog signal band-limited to signals less than f_0 can be completely recovered from samples taken at intervals of time Δt, if $f_0 < 1/2\Delta t$. If, however, a signal sampled at a sample interval Δt contains frequencies higher than $f_N = 1/2\Delta t$, where f_N is the Nyquist or alias frequency, it cannot be correctly recovered (using conventional processing techniques) because of a distortion called aliasing.

Analyzing the data of Figure 3–26, it can be seen that the 25-Hz sinusoid is below Nyquist for all three sample periods. The 75-Hz signal is lower than f_N for 2 and 4 ms sampling but above f_N for 8 ms sampling. From Table 3–3, the Nyquist frequency for 8 ms is 62.5 Hz and 75 Hz is 12.5 Hz more than f_N. The output frequency f_o is 50 Hz or 12.5 Hz less than f_N.

Table 3–3 Nyquist Frequency

<table>
<thead>
<tr>
<th>DT (ms)</th>
<th>f_N (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1000</td>
</tr>
<tr>
<td>1</td>
<td>500</td>
</tr>
<tr>
<td>2</td>
<td>250</td>
</tr>
<tr>
<td>4</td>
<td>125</td>
</tr>
<tr>
<td>8</td>
<td>62.5</td>
</tr>
</tbody>
</table>

At 4 ms sampling, the 150-Hz sinusoid is 25 Hz above f_N and its output of 100 Hz is 25 Hz below f_N. At 8 ms sampling, the 150-Hz sinusoid is 87.5 Hz above f_N or and 25 Hz above $2f_N$. Its output of 25 Hz is equal to the difference between the input and $2f_N$. Figure 3–27 is a chart for calculating output frequencies relative to input and multiples of f_N.

To prevent aliasing, a filter must be applied before sampling or resampling to a larger sample period, and a filter must be applied to limit frequencies to below Nyquist.
5. Complete Table 3–7 by determining the output frequencies for each input frequency and sample period.

<table>
<thead>
<tr>
<th>Input Frequency (Hz)</th>
<th>Frequency Output (Hz)</th>
<th>Frequency Output (Hz)</th>
<th>Frequency Output (Hz)</th>
<th>Frequency Output (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Given the impulse response of a system shown in Figure 3–72, what is the output when the input is as shown in the following?

7. Given wavelet $a = \{5, -2\}$ and wavelet $b = \{-3, 1\}$, calculate the cross-correlations, ϕ_{ab} and ϕ_{ba}.

8. Calculate the autocorrelation of wavelet a in exercise 7.

9. Which of the following are minimum-phase wavelets? The first value in each case is at time zero.
 a. $6, -1, -2$
 b. $3, 4, -4$
 c. $0, 12, -1, -6$
 d. $-2, 5, -2$
 e. $28, -27, 5$
pressure is once again higher than water pressure and a second, although smaller, expansion occurs. Repeated contractions and expansions occur until all the energy is dissipated. Figure 5–26 illustrates this and the waveform produced by the bubble effect.

Pressure produced by a single airgun is proportional to the cube root of gun volume—the total space in the airgun occupied by air. Signal amplitudes are proportional to pressure, so amplitude is also proportional to $V^{1/3}$. So, as shown in Figure 5–27, increasing the volume of a single airgun gives only 26% larger amplitude. However, using two airguns of the same volume placed closely together produces twice the amplitude.

Airguns are used in arrays for two reasons—to increase signal amplitudes and to minimize the bubble effect. The latter is illustrated in Figure 5–28. In this very simple array, three different size guns (different volumes) are used—one large gun, three medium size guns, and three small guns. The guns of the same size are grouped closely together (clustered). Spacing between the one large gun and the two clusters is such that the bubbles interfere destructively except at the initial expansion. Note that the airguns in the array do not fire simultaneously. The smaller guns are delayed because their bubbles achieve maximum expansion earlier than the larger guns. Note also the lower frequency content of the larger guns. Large numbers of airguns of various sizes are grouped together to form tuned arrays. With proper spacing of single guns and gun clusters (array design), virtually any desired signal waveform can be achieved.

The two main objectives of airgun array design are to obtain adequate energy source strength and sufficiently broad frequency bandwidth. The best way to determine a source strength requirement is to conduct a field experiment using different strength sources to record a 2-D line and then process and analyze the results. For the obvious reasons (time and cost), this is almost never done. A review of previously acquired 2-D or 3-D data can aid in determining adequate source strength requirements. Amplitude decay analysis and time variant spectral analysis of previously gathered 2-D or 3-D data can help determine the depth (recording time) of penetration of useful seismic energy. It is possible to overshoot an area by using an energy source that is too strong.
thunder, surf, earthquakes) or cultural (vehicular and foot traffic, grazing animals, pumps). Source-generated noise includes ground roll, air blast, guided waves, and others. Since noise is undesirable, although unavoidable, measurement of noise characteristics (frequency, wavelength propagation velocity) aids in design of techniques to minimize noise recording. Such measurements are done in noise tests.

A useful method of conducting noise tests is to lay out about 12, or more, groups of several bunched geophones, with total length L, and a similar set of 11 geophones perpendicular to these. The length L should be equal to the planned group interval in the seismic survey. Figure 5–75 shows the suggested layout and shooting procedure. Shoot (or sweep) into these geophones starting at the minimum offset x_{min} and continuing at intervals L as shown in Figure 5–75. The minimum offset should also be equal to that planned for the survey. One record is made at each source position. Offsets for the first record are x_{min} to $x_{\text{min}} + L$. Offsets for the second record are $x_{\text{min}} + L$ to $x_{\text{min}} + 2L$, etc. Records are combined with traces offset-ordered.

Figure 5–76 is an example of a noise test record. It is important in conducting noise tests that the same source be used as in the seismic survey. While the same information is present in both the records shot with explosives and the records obtained from vibrator sweeps, there are some differences as well.